EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Fusion and Sensor Management

Download or read book Data Fusion and Sensor Management written by James Manyika and published by Prentice Hall. This book was released on 1994 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a single probability-based information-theoretic model for addressing issues in data fusion and sensor management for multi-sensor systems in general and decentralized systems in particular, this text develops mutually consistent data fusion architectures and algorithms. The algorithms are various architectural forms of the information filter and a corresponding Bayesian classification algorithm. Of significance is the normative sensor management method, making use of information-based utility functions.

Book Sensor and Data Fusion

Download or read book Sensor and Data Fusion written by Lawrence A. Klein and published by SPIE Press. This book was released on 2004 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.

Book Multi Sensor Data Fusion

Download or read book Multi Sensor Data Fusion written by H.B. Mitchell and published by Springer Science & Business Media. This book was released on 2007-07-13 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the theories and techniques of multi-sensor data fusion. It is aimed at advanced undergraduate and first-year graduate students in electrical engineering and computer science, as well as researchers and professional engineers. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familiarity with the basic tools of linear algebra, calculus and simple probability theory is recommended.

Book Tracking and Sensor Data Fusion

Download or read book Tracking and Sensor Data Fusion written by Wolfgang Koch and published by Springer Science & Business Media. This book was released on 2013-09-20 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensor Data Fusion is the process of combining incomplete and imperfect pieces of mutually complementary sensor information in such a way that a better understanding of an underlying real-world phenomenon is achieved. Typically, this insight is either unobtainable otherwise or a fusion result exceeds what can be produced from a single sensor output in accuracy, reliability, or cost. This book provides an introduction Sensor Data Fusion, as an information technology as well as a branch of engineering science and informatics. Part I presents a coherent methodological framework, thus providing the prerequisites for discussing selected applications in Part II of the book. The presentation mirrors the author's views on the subject and emphasizes his own contributions to the development of particular aspects. With some delay, Sensor Data Fusion is likely to develop along lines similar to the evolution of another modern key technology whose origin is in the military domain, the Internet. It is the author's firm conviction that until now, scientists and engineers have only scratched the surface of the vast range of opportunities for research, engineering, and product development that still waits to be explored: the Internet of the Sensors.

Book Data Fusion  Concepts and Ideas

Download or read book Data Fusion Concepts and Ideas written by H B Mitchell and published by Springer Science & Business Media. This book was released on 2012-02-09 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the concepts and idea of multisensor data fusion. It is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction" which was originally published by Springer-Verlag in 2007. The main changes in the new book are: New Material: Apart from one new chapter there are approximately 30 new sections, 50 new examples and 100 new references. At the same time, material which is out-of-date has been eliminated and the remaining text has been rewritten for added clarity. Altogether, the new book is nearly 70 pages longer than the original book. Matlab code: Where appropriate we have given details of Matlab code which may be downloaded from the worldwide web. In a few places, where such code is not readily available, we have included Matlab code in the body of the text. Layout. The layout and typography has been revised. Examples and Matlab code now appear on a gray background for easy identification and advancd material is marked with an asterisk. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familarity with the basic tools of linear algebra, calculus and simple probability is recommended. Although conceptually simple, the study of mult-sensor data fusion presents challenges that are unique within the education of the electrical engineer or computer scientist. To become competent in the field the student must become familiar with tools taken from a wide range of diverse subjects including: neural networks, signal processing, statistical estimation, tracking algorithms, computer vision and control theory. All too often, the student views multi-sensor data fusion as a miscellaneous assortment of different processes which bear no relationship to each other. In contrast, in this book the processes are unified by using a common statistical framework. As a consequence, the underlying pattern of relationships that exists between the different methodologies is made evident. The book is illustrated with many real-life examples taken from a diverse range of applications and contains an extensive list of modern references.

Book Multisensor Data Fusion

Download or read book Multisensor Data Fusion written by David Hall and published by CRC Press. This book was released on 2001-06-20 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut

Book Multi Sensor Information Fusion

Download or read book Multi Sensor Information Fusion written by Xue-Bo Jin and published by MDPI. This book was released on 2020-03-23 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.

Book Mathematical Techniques in Multisensor Data Fusion

Download or read book Mathematical Techniques in Multisensor Data Fusion written by David Lee Hall and published by Artech House. This book was released on 2004 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of this book, advances in algorithms, logic and software tools have transformed the field of data fusion. The latest edition covers these areas as well as smart agents, human computer interaction, cognitive aides to analysis and data system fusion control. data fusion system, this book guides you through the process of determining the trade-offs among competing data fusion algorithms, selecting commercial off-the-shelf (COTS) tools, and understanding when data fusion improves systems processing. Completely new chapters in this second edition explain data fusion system control, DARPA's recently developed TRIP model, and the latest applications of data fusion in data warehousing and medical equipment, as well as defence systems.

Book Multisensor Data Fusion

Download or read book Multisensor Data Fusion written by Hassen Fourati and published by CRC Press. This book was released on 2017-12-19 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.

Book Sensor and Data Fusion for Intelligent Transportation Systems

Download or read book Sensor and Data Fusion for Intelligent Transportation Systems written by Lawrence A. Klein and published by SPIE-International Society for Optical Engineering. This book was released on 2019 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Sensor and Data Fusion for Intelligent Transportation Systems introduces readers to the roles of the data fusion processes defined by the Joint Directors of Laboratories (JDL) data fusion model, data fusion algorithms, and noteworthy applications of data fusion to ITS. Additionally, the monograph offers detailed descriptions of three of the widely applied data fusion techniques and their relevance to ITS (namely, Bayesian inference, Dempster-Shafer evidential reasoning, and Kalman filtering), and indicates directions for future research in the area of data fusion. The focus is on data fusion algorithms rather than on sensor and data fusion architectures, although the book does summarize factors that influence the selection of a fusion architecture and several architecture frameworks"--

Book Distributed Data Fusion for Network Centric Operations

Download or read book Distributed Data Fusion for Network Centric Operations written by David Hall and published by CRC Press. This book was released on 2017-12-19 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the recent proliferation of service-oriented architectures (SOA), cloud computing technologies, and distributed-interconnected systems, distributed fusion is taking on a larger role in a variety of applications—from environmental monitoring and crisis management to intelligent buildings and defense. Drawing on the work of leading experts around the world, Distributed Data Fusion for Network-Centric Operations examines the state of the art of data fusion in a distributed sensing, communications, and computing environment. Get Insight into Designing and Implementing Data Fusion in a Distributed Network Addressing the entirety of information fusion, the contributors cover everything from signal and image processing, through estimation, to situation awareness. In particular, the work offers a timely look at the issues and solutions involving fusion within a distributed network enterprise. These include critical design problems, such as how to maintain a pedigree of agents or nodes that receive information, provide their contribution to the dataset, and pass to other network components. The book also tackles dynamic data sharing within a network-centric enterprise, distributed fusion effects on state estimation, graph-theoretic methods to optimize fusion performance, human engineering factors, and computer ontologies for higher levels of situation assessment. A comprehensive introduction to this emerging field and its challenges, the book explores how data fusion can be used within grid, distributed, and cloud computing architectures. Bringing together both theoretical and applied research perspectives, this is a valuable reference for fusion researchers and practitioners. It offers guidance and insight for those working on the complex issues of designing and implementing distributed, decentralized information fusion.

Book Multi Sensor Data Fusion with MATLAB

Download or read book Multi Sensor Data Fusion with MATLAB written by Jitendra R. Raol and published by CRC Press. This book was released on 2009-12-16 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using MATLAB examples wherever possible, Multi-Sensor Data Fusion with MATLAB explores the three levels of multi-sensor data fusion (MSDF): kinematic-level fusion, including the theory of DF; fuzzy logic and decision fusion; and pixel- and feature-level image fusion. The authors elucidate DF strategies, algorithms, and performance evaluation mainly

Book Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing

Download or read book Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing written by Ni-Bin Chang and published by CRC Press. This book was released on 2018-02-21 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.

Book Data Fusion in Wireless Sensor Networks

Download or read book Data Fusion in Wireless Sensor Networks written by Domenico Ciuonzo and published by Institution of Engineering and Technology. This book was released on 2019-03-11 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of data fusion has been expanding in recent years through the incorporation of pervasive applications, where the physical infrastructure is coupled with information and communication technologies, such as wireless sensor networks for the internet of things (IoT), e-health and Industry 4.0. In this edited reference, the authors provide advanced tools for the design, analysis and implementation of inference algorithms in wireless sensor networks.

Book Springer Handbook of Robotics

Download or read book Springer Handbook of Robotics written by Bruno Siciliano and published by Springer. This book was released on 2016-07-27 with total page 2259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/

Book Data Fusion Methodology and Applications

Download or read book Data Fusion Methodology and Applications written by Marina Cocchi and published by Elsevier. This book was released on 2019-05-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Fusion Methodology and Applications explores the data-driven discovery paradigm in science and the need to handle large amounts of diverse data. Drivers of this change include the increased availability and accessibility of hyphenated analytical platforms, imaging techniques, the explosion of omics data, and the development of information technology. As data-driven research deals with an inductive attitude that aims to extract information and build models capable of inferring the underlying phenomena from the data itself, this book explores the challenges and methodologies used to integrate data from multiple sources, analytical platforms, different modalities, and varying timescales. - Presents the first comprehensive textbook on data fusion, focusing on all aspects of data-driven discovery - Includes comprehensible, theoretical chapters written for large and diverse audiences - Provides a wealth of selected application to the topics included

Book Intelligent Data Mining and Fusion Systems in Agriculture

Download or read book Intelligent Data Mining and Fusion Systems in Agriculture written by Xanthoula-Eirini Pantazi and published by Academic Press. This book was released on 2019-10-08 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms. - Covers crop protection, automation in agriculture, artificial intelligence in agriculture, sensing and Internet of Things (IoTs) in agriculture - Addresses AI use in weed management, disease detection, yield prediction and crop production - Utilizes case studies to provide real-world insights and direction