Download or read book An Introduction to Hybrid Dynamical Systems written by Arjan J. van der Schaft and published by Springer. This book was released on 2007-10-03 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.
Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.
Download or read book Hybrid Dynamical Systems written by Rafal Goebel and published by Princeton University Press. This book was released on 2012-03-18 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.
Download or read book Automating Data Driven Modelling of Dynamical Systems written by Dhruv Khandelwal and published by Springer Nature. This book was released on 2022-02-03 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
Download or read book Data Driven Modeling Using MATLAB in Water Resources and Environmental Engineering written by Shahab Araghinejad and published by Springer Science & Business Media. This book was released on 2013-11-26 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering” provides a systematic account of major concepts and methodologies for data-driven models and presents a unified framework that makes the subject more accessible to and applicable for researchers and practitioners. It integrates important theories and applications of data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering such as hydrological forecasting, flood analysis, water quality monitoring, regionalizing climatic data, and general function approximation. The book presents the statistical-based models including basic statistical analysis, nonparametric and logistic regression methods, time series analysis and modeling, and support vector machines. It also deals with the analysis and modeling based on artificial intelligence techniques including static and dynamic neural networks, statistical neural networks, fuzzy inference systems, and fuzzy regression. The book also discusses hybrid models as well as multi-model data fusion to wrap up the covered models and techniques. The source files of relatively simple and advanced programs demonstrating how to use the models are presented together with practical advice on how to best apply them. The programs, which have been developed using the MATLAB® unified platform, can be found on extras.springer.com. The main audience of this book includes graduate students in water resources engineering, environmental engineering, agricultural engineering, and natural resources engineering. This book may be adapted for use as a senior undergraduate and graduate textbook by focusing on selected topics. Alternatively, it may also be used as a valuable resource book for practicing engineers, consulting engineers, scientists and others involved in water resources and environmental engineering.
Download or read book Hybrid Modeling in Process Industries written by Jarka Glassey and published by CRC Press. This book was released on 2018-02-01 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title introduces the underlying theory and demonstrates practical applications in different process industries using hybrid modeling. It reviews hybrid modeling approach applicability in wide range of process industries, recommends how to increase hybrid model performance and throw Insights into cost efficient practices in modeling techniques Discusses advance process operation maximizing the benefits of available process knowledge and Includes real-life and practical case studies
Download or read book Data driven Modelling and Scientific Machine Learning in Continuum Physics written by Krishna Garikipati and published by Springer Nature. This book was released on with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Driven Modeling Scientific Computation written by Jose Nathan Kutz and published by . This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Download or read book Data Driven Modeling Scientific Computation written by J. Nathan Kutz and published by OUP Oxford. This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: The burgeoning field of data analysis is expanding at an incredible pace due to the proliferation of data collection in almost every area of science. The enormous data sets now routinely encountered in the sciences provide an incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret and give meaning to the data in the context of its scientific setting. A specific aim of this book is to integrate standard scientific computing methods with data analysis. By doing so, it brings together, in a self-consistent fashion, the key ideas from: · statistics, · time-frequency analysis, and · low-dimensional reductions The blend of these ideas provides meaningful insight into the data sets one is faced with in every scientific subject today, including those generated from complex dynamical systems. This is a particularly exciting field and much of the final part of the book is driven by intuitive examples from it, showing how the three areas can be used in combination to give critical insight into the fundamental workings of various problems. Data-Driven Modeling and Scientific Computation is a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation and analysis. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological and physical sciences. An accessible introductory-to-advanced text, this book fully integrates MATLAB and its versatile and high-level programming functionality, while bringing together computational and data skills for both undergraduate and graduate students in scientific computing.
Download or read book Hybrid and Networked Dynamical Systems written by Romain Postoyan and published by Springer Nature. This book was released on with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in data driven approaches and modeling of complex systems written by Mohd Hafiz Mohd and published by Frontiers Media SA. This book was released on 2023-06-27 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data driven modeling and optimization in fluid dynamics From physics based to machine learning approaches written by Michel Bergmann and published by Frontiers Media SA. This book was released on 2023-01-05 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Hybrid Systems Control written by Jan Lunze and published by Cambridge University Press. This book was released on 2009-10-15 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sets out core theory and reviews new methods and applications to show how hybrid systems can be modelled and understood.
Download or read book A Hybrid Physical and Data drivApproach to Motion Prediction and Control in Human Robot Collaboration written by Min Wu and published by Logos Verlag Berlin GmbH. This book was released on 2022-06-14 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, researchers have achieved great success in guaranteeing safety in human-robot interaction, yielding a new generation of robots that can work with humans in close proximity, known as collaborative robots (cobots). However, due to the lack of ability to understand and coordinate with their human partners, the ``co'' in most cobots still refers to ``coexistence'' rather than ``collaboration''. This thesis aims to develop an adaptive learning and control framework with a novel physical and data-driven approach towards a real collaborative robot. The first part focuses on online human motion prediction. A comprehensive study on various motion prediction techniques is presented, including their scope of application, accuracy in different time scales, and implementation complexity. Based on this study, a hybrid approach that combines physically well-understood models with data-driven learning techniques is proposed and validated through a motion data set. The second part addresses interaction control in human-robot collaboration. An adaptive impedance control scheme with human reference estimation is presented. Reinforcement learning is used to find optimal control parameters to minimize a task-orient cost function without fully knowing the system dynamic. The proposed framework is experimentally validated through two benchmark applications for human-robot collaboration: object handover and cooperative object handling. Results show that the robot can provide reliable online human motion prediction, react early to human motion variation, make proactive contributions to physical collaborations, and behave compliantly in response to human forces.
Download or read book Data Driven Modeling for Sustainable Engineering written by Kondo H. Adjallah and published by Springer. This book was released on 2019-06-21 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 1st International Conference on Engineering, Applied Sciences and System Modeling (ICEASSM), a four-day event (18th–21st April 2017) held in Accra, Ghana. It focuses on research work promoting a better understanding of engineering problems through applied sciences and modeling, and on solutions generated in an African setting but with relevance to the world as a whole. The book provides a holistic overview of challenges facing Africa, and addresses various areas from research and development perspectives. Presenting contributions by scientists, engineers and experts hailing from a host of international institutions, the book offers original approaches and technological solutions to help solve real-world problems through research and knowledge sharing. Further, it explores promising opportunities for collaborative research on issues of scientific, economic and social development, making it of interest to researchers, scientists and practitioners looking to conduct research in disciplines such as water supply, control, civil engineering, statistical modeling, renewable energy and sustainable urban development.
Download or read book Hydrological Data Driven Modelling written by Renji Remesan and published by Springer. This book was released on 2014-11-03 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.