Download or read book Data Matching written by Peter Christen and published by Springer Science & Business Media. This book was released on 2012-07-04 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.
Download or read book Innovative Techniques and Applications of Entity Resolution written by Wang, Hongzhi and published by IGI Global. This book was released on 2014-02-28 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Entity resolution is an essential tool in processing and analyzing data in order to draw precise conclusions from the information being presented. Further research in entity resolution is necessary to help promote information quality and improved data reporting in multidisciplinary fields requiring accurate data representation. Innovative Techniques and Applications of Entity Resolution draws upon interdisciplinary research on tools, techniques, and applications of entity resolution. This research work provides a detailed analysis of entity resolution applied to various types of data as well as appropriate techniques and applications and is appropriately designed for students, researchers, information professionals, and system developers.
Download or read book Entity Resolution and Information Quality written by John R. Talburt and published by Elsevier. This book was released on 2011-01-14 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Entity Resolution and Information Quality presents topics and definitions, and clarifies confusing terminologies regarding entity resolution and information quality. It takes a very wide view of IQ, including its six-domain framework and the skills formed by the International Association for Information and Data Quality {IAIDQ). The book includes chapters that cover the principles of entity resolution and the principles of Information Quality, in addition to their concepts and terminology. It also discusses the Fellegi-Sunter theory of record linkage, the Stanford Entity Resolution Framework, and the Algebraic Model for Entity Resolution, which are the major theoretical models that support Entity Resolution. In relation to this, the book briefly discusses entity-based data integration (EBDI) and its model, which serve as an extension of the Algebraic Model for Entity Resolution. There is also an explanation of how the three commercial ER systems operate and a description of the non-commercial open-source system known as OYSTER. The book concludes by discussing trends in entity resolution research and practice. Students taking IT courses and IT professionals will find this book invaluable. - First authoritative reference explaining entity resolution and how to use it effectively - Provides practical system design advice to help you get a competitive advantage - Includes a companion site with synthetic customer data for applicatory exercises, and access to a Java-based Entity Resolution program.
Download or read book Data Cleaning written by Ihab F. Ilyas and published by Morgan & Claypool. This book was released on 2019-06-18 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an overview of the end-to-end data cleaning process. Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions. Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems. This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors in the data. Rather than focus on a particular data cleaning task, this book describes various error detection and repair methods, and attempts to anchor these proposals with multiple taxonomies and views. Specifically, it covers four of the most common and important data cleaning tasks, namely, outlier detection, data transformation, error repair (including imputing missing values), and data deduplication. Furthermore, due to the increasing popularity and applicability of machine learning techniques, it includes a chapter that specifically explores how machine learning techniques are used for data cleaning, and how data cleaning is used to improve machine learning models. This book is intended to serve as a useful reference for researchers and practitioners who are interested in the area of data quality and data cleaning. It can also be used as a textbook for a graduate course. Although we aim at covering state-of-the-art algorithms and techniques, we recognize that data cleaning is still an active field of research and therefore provide future directions of research whenever appropriate.
Download or read book Relational Data Mining written by Saso Dzeroski and published by Springer Science & Business Media. This book was released on 2001-08 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
Download or read book Web Technologies and Applications written by Lei Chen and published by Springer. This book was released on 2014-08-15 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 16th Asia-Pacific Conference APWeb 2014 held in Changsha, China, in September 2014. The 34 full papers and 23 short papers presented were carefully reviewed and selected from 134 submissions. The papers address research, development and advanced applications of large-scale data management, web and search technologies, and information processing.
Download or read book Development Research in Practice written by Kristoffer Bjärkefur and published by World Bank Publications. This book was released on 2021-07-16 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well as illustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically. “In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.†? —Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University “Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.†? —Ruth E. Levine, PhD, CEO, IDinsight “Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.†? —Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley “The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.†? —Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University
Download or read book Entity Resolution in the Web of Data written by Vassilis Christophides and published by Springer Nature. This book was released on 2022-05-31 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, several knowledge bases have been built to enable large-scale knowledge sharing, but also an entity-centric Web search, mixing both structured data and text querying. These knowledge bases offer machine-readable descriptions of real-world entities, e.g., persons, places, published on the Web as Linked Data. However, due to the different information extraction tools and curation policies employed by knowledge bases, multiple, complementary and sometimes conflicting descriptions of the same real-world entities may be provided. Entity resolution aims to identify different descriptions that refer to the same entity appearing either within or across knowledge bases. The objective of this book is to present the new entity resolution challenges stemming from the openness of the Web of data in describing entities by an unbounded number of knowledge bases, the semantic and structural diversity of the descriptions provided across domains even for the same real-world entities, as well as the autonomy of knowledge bases in terms of adopted processes for creating and curating entity descriptions. The scale, diversity, and graph structuring of entity descriptions in the Web of data essentially challenge how two descriptions can be effectively compared for similarity, but also how resolution algorithms can efficiently avoid examining pairwise all descriptions. The book covers a wide spectrum of entity resolution issues at the Web scale, including basic concepts and data structures, main resolution tasks and workflows, as well as state-of-the-art algorithmic techniques and experimental trade-offs.
Download or read book Unstructured Data Analysis written by Matthew Windham and published by SAS Institute. This book was released on 2018-09-14 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unstructured data is the most voluminous form of data in the world, and several elements are critical for any advanced analytics practitioner leveraging SAS software to effectively address the challenge of deriving value from that data. This book covers the five critical elements of entity extraction, unstructured data, entity resolution, entity network mapping and analysis, and entity management. By following examples of how to apply processing to unstructured data, readers will derive tremendous long-term value from this book as they enhance the value they realize from SAS products.
Download or read book Entity Resolution in the Web of Data written by Vassilis Christophides and published by Morgan & Claypool Publishers. This book was released on 2015-08-01 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, several knowledge bases have been built to enable large-scale knowledge sharing, but also an entity-centric Web search, mixing both structured data and text querying. These knowledge bases offer machine-readable descriptions of real-world entities, e.g., persons, places, published on the Web as Linked Data. However, due to the different information extraction tools and curation policies employed by knowledge bases, multiple, complementary and sometimes conflicting descriptions of the same real-world entities may be provided. Entity resolution aims to identify different descriptions that refer to the same entity appearing either within or across knowledge bases. The objective of this book is to present the new entity resolution challenges stemming from the openness of the Web of data in describing entities by an unbounded number of knowledge bases, the semantic and structural diversity of the descriptions provided across domains even for the same real-world entities, as well as the autonomy of knowledge bases in terms of adopted processes for creating and curating entity descriptions. The scale, diversity, and graph structuring of entity descriptions in the Web of data essentially challenge how two descriptions can be effectively compared for similarity, but also how resolution algorithms can efficiently avoid examining pairwise all descriptions. The book covers a wide spectrum of entity resolution issues at the Web scale, including basic concepts and data structures, main resolution tasks and workflows, as well as state-of-the-art algorithmic techniques and experimental trade-offs.
Download or read book The Four Generations of Entity Resolution written by George Papadakis and published by Springer Nature. This book was released on 2022-06-01 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Entity Resolution (ER) lies at the core of data integration and cleaning and, thus, a bulk of the research examines ways for improving its effectiveness and time efficiency. The initial ER methods primarily target Veracity in the context of structured (relational) data that are described by a schema of well-known quality and meaning. To achieve high effectiveness, they leverage schema, expert, and/or external knowledge. Part of these methods are extended to address Volume, processing large datasets through multi-core or massive parallelization approaches, such as the MapReduce paradigm. However, these early schema-based approaches are inapplicable to Web Data, which abound in voluminous, noisy, semi-structured, and highly heterogeneous information. To address the additional challenge of Variety, recent works on ER adopt a novel, loosely schema-aware functionality that emphasizes scalability and robustness to noise. Another line of present research focuses on the additional challenge of Velocity, aiming to process data collections of a continuously increasing volume. The latest works, though, take advantage of the significant breakthroughs in Deep Learning and Crowdsourcing, incorporating external knowledge to enhance the existing words to a significant extent. This synthesis lecture organizes ER methods into four generations based on the challenges posed by these four Vs. For each generation, we outline the corresponding ER workflow, discuss the state-of-the-art methods per workflow step, and present current research directions. The discussion of these methods takes into account a historical perspective, explaining the evolution of the methods over time along with their similarities and differences. The lecture also discusses the available ER tools and benchmark datasets that allow expert as well as novice users to make use of the available solutions.
Download or read book Handbook of Research on Fuzzy Information Processing in Databases written by Galindo, Jos and published by IGI Global. This book was released on 2008-05-31 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides comprehensive coverage and definitions of the most important issues, concepts, trends, and technologies in fuzzy topics applied to databases, discussing current investigation into uncertainty and imprecision management by means of fuzzy sets and fuzzy logic in the field of databases and data mining. It offers a guide to fuzzy information processing in databases"--Provided by publisher.
Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Download or read book Trends and Applications in Knowledge Discovery and Data Mining written by Jiuyong Li and published by Springer. This book was released on 2013-08-23 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings at PAKDD Workshops 2013, affiliated with the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Gold Coast, Australia in April 2013. The 47 revised full papers presented were carefully reviewed and selected from 92 submissions. The workshops affiliated with PAKDD 2013 include: Data Mining Applications in Industry and Government (DMApps), Data Analytics for Targeted Healthcare (DANTH), Quality Issues, Measures of Interestingness and Evaluation of Data Mining Models (QIMIE), Biologically Inspired Techniques for Data Mining (BDM), Constraint Discovery and Application (CDA), Cloud Service Discovery (CloudSD).
Download or read book Mining Graph Data written by Diane J. Cook and published by John Wiley & Sons. This book was released on 2006-12-18 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text takes a focused and comprehensive look at mining data represented as a graph, with the latest findings and applications in both theory and practice provided. Even if you have minimal background in analyzing graph data, with this book you’ll be able to represent data as graphs, extract patterns and concepts from the data, and apply the methodologies presented in the text to real datasets. There is a misprint with the link to the accompanying Web page for this book. For those readers who would like to experiment with the techniques found in this book or test their own ideas on graph data, the Web page for the book should be http://www.eecs.wsu.edu/MGD.
Download or read book Frontiers in Cyber Security written by Fagen Li and published by Springer. This book was released on 2018-11-03 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the First International Conference on Frontiers in Cyber Security, held in Chengdu, China, in November 2018. The 18 full papers along with the3 short papers presented were carefully reviewed and selected from 62 submissions. The papers are organized in topical sections, namely: symmetric key cryptography, public key cryptography, post-quantum cryptography, cloud security and data deduplication, access control, attack and behavior detection, system and network security, security design.
Download or read book Handbook of Data Quality written by Shazia Sadiq and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches.