Download or read book Data Analytics in Power Markets written by Qixin Chen and published by Springer Nature. This book was released on 2021-10-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to solve some key problems in the decision and optimization procedure for power market organizers and participants in data-driven approaches. It begins with an overview of the power market data and analyzes on their characteristics and importance for market clearing. Then, the first part of the book discusses the essential problem of bus load forecasting from the perspective of market organizers. The related works include load uncertainty modeling, bus load bad data correction, and monthly load forecasting. The following part of the book answers how much information can be obtained from public data in locational marginal price (LMP)-based markets. It introduces topics such as congestion identification, componential price forecasting, quantifying the impact of forecasting error, and financial transmission right investment. The final part of the book answers how to model the complex market bidding behaviors. Specific works include pattern extraction, aggregated supply curve forecasting, market simulation, and reward function identification in bidding. These methods are especially useful for market organizers to understand the bidding behaviors of market participants and make essential policies. It will benefit and inspire researchers, graduate students, and engineers in the related fields.
Download or read book Advanced Data Analytics for Power Systems written by Ali Tajer and published by Cambridge University Press. This book was released on 2021-04-08 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science.
Download or read book Integrating Renewables in Electricity Markets written by Juan M. Morales and published by Springer Science & Business Media. This book was released on 2013-12-03 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This addition to the ISOR series addresses the analytics of the operations of electric energy systems with increasing penetration of stochastic renewable production facilities, such as wind- and solar-based generation units. As stochastic renewable production units become ubiquitous throughout electric energy systems, an increasing level of flexible backup provided by non-stochastic units and other system agents is needed if supply security and quality are to be maintained. Within the context above, this book provides up-to-date analytical tools to address challenging operational problems such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract the variability and unpredictability of stochastic renewable units so that supply security is not at risk. • The trading of the electric energy produced by stochastic renewable producers. • The association of a number of electricity production facilities, stochastic and others, to increase their competitive edge in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, applied mathematics and economics. Practitioners in the electric energy sector will benefit as well from the concepts and techniques explained in this book.
Download or read book Big Data Analytics Strategies for the Smart Grid written by Carol L. Stimmel and published by CRC Press. This book was released on 2014-07-25 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: By implementing a comprehensive data analytics program, utility companies can meet the continually evolving challenges of modern grids that are operationally efficient, while reconciling the demands of greenhouse gas legislation and establishing a meaningful return on investment from smart grid deployments. Readable and accessible, Big Data Analytics Strategies for the Smart Grid addresses the needs of applying big data technologies and approaches, including Big Data cybersecurity, to the critical infrastructure that makes up the electrical utility grid. It supplies industry stakeholders with an in-depth understanding of the engineering, business, and customer domains within the power delivery market. The book explores the unique needs of electrical utility grids, including operational technology, IT, storage, processing, and how to transform grid assets for the benefit of both the utility business and energy consumers. It not only provides specific examples that illustrate how analytics work and how they are best applied, but also describes how to avoid potential problems and pitfalls. Discussing security and data privacy, it explores the role of the utility in protecting their customers’ right to privacy while still engaging in forward-looking business practices. The book includes discussions of: SAS for asset management tools The AutoGrid approach to commercial analytics Space-Time Insight’s work at the California ISO (CAISO) This book is an ideal resource for mid- to upper-level utility executives who need to understand the business value of smart grid data analytics. It explains critical concepts in a manner that will better position executives to make the right decisions about building their analytics programs. At the same time, the book provides sufficient technical depth that it is useful for data analytics professionals who need to better understand the nuances of the engineering and business challenges unique to the utilities industry.
Download or read book Smart Meter Data Analytics written by Yi Wang and published by Springer Nature. This book was released on 2020-02-24 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.
Download or read book Intelligent Data Analytics for Power and Energy Systems written by Hasmat Malik and published by Springer Nature. This book was released on 2022-02-17 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together state-of-the-art advances in intelligent data analytics as driver of the future evolution of PaE systems. In the modern power and energy (PaE) domain, the increasing penetration of renewable energy sources (RES) and the consequent empowerment of consumers as a central and active solution to deal with the generation and development variability are driving the PaE system towards a historic paradigm shift. The small-scale, diversity, and especially the number of new players involved in the PaE system potentiate a significant growth of generated data. Moreover, advances in communication (between IoT devices and M2M: machine to machine, man to machine, etc.) and digitalization hugely increased the volume of data that results from PaE components, installations, and systems operation. This data is becoming more and more important for PaE systems operation, maintenance, planning, and scheduling with relevant impact on all involved entities, from producers, consumer,s and aggregators to market and system operators. However, although the PaE community is fully aware of the intrinsic value of those data, the methods to deal with it still necessitate substantial enhancements, development and research. Intelligent data analytics is thereby playing a fundamental role in this domain, by enabling stakeholders to expand their decision-making method and achieve the awareness on the PaE environment. The editors also included demonstrated codes for presented problems for better understanding for beginners.
Download or read book Analytics and Optimization for Renewable Energy Integration written by Ning Zhang and published by CRC Press. This book was released on 2019-02-21 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of this book covers the modeling and forecast of renewable energy and operation and planning of power system with renewable energy integration.The first part presents mathematical theories of stochastic mathematics; the second presents modeling and analytic techniques for renewable energy generation; the third provides solutions on how to handle the uncertainty of renewable energy in power system operation. It includes advanced stochastic unit commitment models to acquire the optimal generation schedule under uncertainty, efficient algorithms to calculate the probabilistic power, and an efficient operation strategy for renewable power plants participating in electricity markets.
Download or read book Big Data Analytics in Future Power Systems written by Ahmed F. Zobaa and published by CRC Press. This book was released on 2018-08-14 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power systems are increasingly collecting large amounts of data due to the expansion of the Internet of Things into power grids. In a smart grids scenario, a huge number of intelligent devices will be connected with almost no human intervention characterizing a machine-to-machine scenario, which is one of the pillars of the Internet of Things. The book characterizes and evaluates how the emerging growth of data in communications networks applied to smart grids will impact the grid efficiency and reliability. Additionally, this book discusses the various security concerns that become manifest with Big Data and expanded communications in power grids. Provide a general description and definition of big data, which has been gaining significant attention in the research community. Introduces a comprehensive overview of big data optimization methods in power system. Reviews the communication devices used in critical infrastructure, especially power systems; security methods available to vet the identity of devices; and general security threats in CI networks. Presents applications in power systems, such as power flow and protection. Reviews electricity theft concerns and the wide variety of data-driven techniques and applications developed for electricity theft detection.
Download or read book The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy written by John Macintyre and published by Springer Nature. This book was released on 2021-10-27 with total page 1169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 2020 2nd International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2021), online conference, on 30 October 2021. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.
Download or read book Digitalization of Power Markets and Systems Using Energy Informatics written by Umit Cali and published by Springer Nature. This book was released on 2021-09-26 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this textbook is to introduce students and professionals to fundamental principles and techniques and emerging technologies in energy informatics and the digitalization of power markets and systems. The book covers such areas as smart grids and artificial intelligence (AI) and distributed ledger technology (DLT), with a focus on information and communication technologies (ICT) deployed to modernize the electric energy infrastructure. It also provides an overview of the smart grid and its main components: smart grid applications at transmission, distribution, and customer level, network requirements with communications technologies, and standards and protocols. In addition, the book addresses emerging technologies and trends in next-generation power systems, i.e., energy informatics, such as digital green shift, energy cyber-physical-social systems (E-CPSS), energy IoT, energy blockchain, and advanced optimization. Future aspects of digitalized power markets and systems will be discussed with real-world energy informatics projects. The book is designed to be a core text in upper-undergraduate and graduate courses such as Introduction to Smart Grids, Digitalization of Power Systems, and Advanced Power System Topics in Energy Informatics.
Download or read book Predictive Analytics written by Eric Siegel and published by John Wiley & Sons. This book was released on 2016-01-12 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
Download or read book Machine Learning and Data Science in the Power Generation Industry written by Patrick Bangert and published by Elsevier. This book was released on 2021-01-14 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. - Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful - Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them - Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems - Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls
Download or read book Governmental Power Market Ing in the VU CHAOS World written by Jermsittiparsert, Kittisak and published by IGI Global. This book was released on 2023-09-29 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Governmental Power Market-Ing in the VU-CHAOS World is a thought-provoking book that explores the blended concepts of state governance, marketing, and management. This book offers a comprehensive examination of the dynamics and implications of governmental power in a rapidly changing world. Delve into this text to investigate the concept of government and its significance, as well as the rise of gerontocracy, where the elders exert influence over the state game, both in theory and practice. Further chapters explore topics such as the hidden agenda behind the development of government in governmental power marketing theory, the sources and status of government, strategies, and behavior of governments as buyers. The influences that shape governmental buying behavior and the implications for controlling governmental power are also examined. Readers will gain insights into future trends in government theory and practice, including strategic approaches for stateless players and net states. Case studies and comparative applications offer real-world examples and practical implications. Governmental Power Market-Ing in the VU-CHAOS World is an essential resource for academics, researchers, policymakers, and anyone interested in understanding the complex interplay between governmental power and market dynamics in today's evolving global landscape.
Download or read book Data Science for Wind Energy written by Yu Ding and published by CRC Press. This book was released on 2020-12-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author's book site at https://aml.engr.tamu.edu/book-dswe. Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights
Download or read book Smart Grids and Big Data Analytics for Smart Cities written by Chun Sing Lai and published by Springer Nature. This book was released on 2020-10-31 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to different elements of smart city infrastructure - smart energy, smart water, smart health, and smart transportation - and how they work independently and together. Theoretical development and practical applications are presented, along with related standards, recommended practices, and professional guidelines. Throughout the book, diagrams and case studies are provided that demonstrate the systems presented, and extensive use of scenarios helps readers better grasp how smart grids, the Internet of Things, big data analytics, and trading models can improve road safety, healthcare, smart water management, and a low-carbon economy. A must-read for practicing engineers, consultants, regulators, utility operators, and environmentalists involved in smart city development, the book will also appeal to city planners and designers, as well as upper-level undergraduate and graduate students studying energy, environmental science, technology, economics, signal processing, information science, and power engineering.
Download or read book Stochastic Modelling of Electricity and Related Markets written by Fred Espen Benth and published by World Scientific. This book was released on 2008 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives.This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. Ornstein?Uhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice.
Download or read book The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy written by John MacIntyre and published by Springer Nature. This book was released on 2020-11-03 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2020), held in Shanghai, China, on November 6, 2020. Due to the COVID-19 outbreak problem, SPIoT-2020 conference was held online by Tencent Meeting. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.