EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cyclometallated platinum and palladium complexes with N C N coordinating terdentate ligands

Download or read book Cyclometallated platinum and palladium complexes with N C N coordinating terdentate ligands written by David Lee Rochester and published by . This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Higher Oxidation State Organopalladium and Platinum Chemistry

Download or read book Higher Oxidation State Organopalladium and Platinum Chemistry written by Allan J. Canty and published by Springer. This book was released on 2011-02-25 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kyle A. Grice, Margaret L. Scheuermann and Karen I. Goldberg: Five-Coordinate Platinum(IV) Complexes.- Jay A. Labinger and John E. Bercaw: The Role of Higher Oxidation State Species in Platinum-Mediated C-H Bond Activation and Functionalization.- Joy M. Racowski and Melanie S. Sanford: Carbon-Heteroatom Bond-Forming Reductive Elimination from Palladium(IV) Complexes.- Helena C. Malinakova: Palladium(IV) Complexes as Intermediates in Catalytic and Stoichiometric Cascade Sequences Providing Complex Carbocycles and Heterocycles.- Allan J. Canty and Manab Sharma: h1-Alkynyl Chemistry for the Higher Oxidation States of Palladium and Platinum.- David C. Powers and Tobias Ritter: Palladium(III) in Synthesis and Catalysis.- Marc-Etienne Moret: Organometallic Platinum(II) and Palladium(II) Complexes as Donor Ligands for Lewis-Acidic d10 and s2 Centers.

Book Synthesis  Reactivity  and Catalytic Applications of Ruthenium and Palladium Complexes Supported by New Pincer Ligands

Download or read book Synthesis Reactivity and Catalytic Applications of Ruthenium and Palladium Complexes Supported by New Pincer Ligands written by Morgan C. MacInnis and published by . This book was released on 2011 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT continued: These transfer hydrogenation studies are among the first catalytic studies of silyl-pincer complexes and establish [R-PSiP]M species as viable candidates for catalysis. The synthesis and reactivity of 4- and 5-coordinate RuII complexes featuring the [Cy-PSiP] ligand were explored. Reaction of [Cy-PSiP]H with [(p-cymene)RuCl2]2 in the presence of NEt3 and PCy3 resulted in the formation of ([Cy-PSiP]RuCl)2, which serves as a precursor to a series of unprecedented 4-coordinate, formally 14-electron [Cy-PSiP]RuX (X = NHAr, N(SiMe3)2, OtBu) complexes that feature an unusual trigonal pyramidal geometry at Ru. The reactivity of these novel diamagnetic complexes is described, including the reaction of [Cy-PSiP]RuOtBu with amine-boranes resulting in the formation of rare bis(?-BH) complexes. Computational studies confirmed the key role of the strongly ?-donating silyl group of the Cy-PSiP ligand in facilitating the synthesis of such low-coordinate Ru species and enforcing the unusual trigonal pyramidal geometry. The mechanism of ammonia-borane activation was also examined computationally. Lastly, the synthesis and structural characterization of PdII complexes supported by the pincer-like bis(amino)phosphido ligand [?3-(2-Me2NC6H4)2P]- ([NPN]) is described. Examples of ?1-, ?2-, and ?3-NPN coordination to Pd are described, as is the catalytic activity of ([NPN]PdX)2 (X = Cl, OAc, OTf) complexes in the Heck olefin arylation reaction. In an effort to discourage the formation of phosphido-bridged dinuclear complexes, pre-coordination of the Lewis acid BPh3 to [NPN] was pursued. Upon reaction of [N(P?BPh3)N]K with [PdCl(C3H5)]2, the ?1-allyl complex [?3-N(P?BPh3)N]Pd(?1-C3H5) was isolated, which establishes the coordination of a Lewis acid to the phosphido donor of the [NPN] ligand as a viable strategy for encouraging the formation of mononuclear ?3-NPN complexes.

Book LUMINESCENT PALLADIUM II    PL

    Book Details:
  • Author : Pui-Keong Chow
  • Publisher : Open Dissertation Press
  • Release : 2017-01-26
  • ISBN : 9781361005378
  • Pages : 502 pages

Download or read book LUMINESCENT PALLADIUM II PL written by Pui-Keong Chow and published by Open Dissertation Press. This book was released on 2017-01-26 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Luminescent Palladium(II) and Platinum(II) Complexes With Tridentate Monoanionic and Tetradentate Dianionic Cyclometallated Ligands: Structures, Photophysical Properties and Material Application" by Pui-keong, Chow, 周沛強, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Four structural isomers of platinum(II) complexes with C-deprotonated R-C DEGREESN DEGREESN-R' cyclometallated ligands (R-C DEGREESN DEGREESN-R' = -extended 6-aryl-2,2'-bipyridine derivatives containing 2-naphthyl, 3-isoquinolinyl, 1-isoquinolinyl or 2-quinolinyl moieties) have been synthesized with their photophysical properties investigated. The one bearing a 3-isoquinolinyl moiety shows the highest emission quantum yield among the four and hence has been extensively modified to give a series of complexes with different ancillary ligands (chloride, iodide, phenoxide, or acetylide). Most of these complexes show vibronic emission (max = 515-644 nm) with high emission quantum yield (up to unity) in degassed CH2Cl2; one of them has been used for OLED fabrication and shows a maximum EQE of 8.15 % with current efficiency of 25 cd A-1. The photocatalytic properties of these derivative complexes for oxidative tertiary amine functionalization have also been examined. Several highly robust and emissive platinum(II) complexes supported by two types of tetradentate O DEGREESN DEGREESC DEGREESN ligand systems (Φem up to 0.99; Td up to 520 ℃) have been synthesized and show different emission energies (λmax = 482-561 nm). Most of them exhibit excimeric emission in solution state at room temperature which are dependent on the modifications on the tetradentate O DEGREESN DEGREESC DEGREESN ligands. DFT/TDDFT calculations reveal that the metal complex showing the most intense excimeric emission possesses an excimeric excited state with a localized structure, which is unusual for these classes of platinum(II) complexes. Based on this finding, WOLED (ηL(max) = 71.0 cd/A, ηp(max) = 55.8 lm/W, ηExt = 16.5 %, CIE = 0.33, 0.42, CRI = 77) and WPLED (ηL(max) = 17.0 cd/A, ηp(max) = 9.1 lm/W, ηExt = 9.7 %, CIE = 0.43, 0.45, CRI = 78) based on this complex have been fabricated with high efficiency achieved. Palladium(II) complexes containing C-deprotonated R-C DEGREESN DEGREESN-R' cyclometallated and pentafluorophenylacetylide ligands exhibit phosphorescence in both solid state and fluid solutions at room temperature with some of them exhibiting aggregation-induced emission (AIE). These complexes have been applied as photosensitizers in light-induced oxidative functionalization of secondary and tertiary benzylic amines as well as in light-induced hydrogen production, with a maximum of 175 turnovers for hydrogen produced. Palladium(II) complexes containing two types of tetradentate dianionic O DEGREESN DEGREESC DEGREESN ligand systems (Systems 1 and 2) have been prepared and show constrasting photophyical properties. A full scale time-resolved spectroscopic analysis has been done on some of these complexes and a platinum(II) analogue. These complexes are found to have similar excited state decay pathway( 〖S_1〗 DEGREESi→〖S_1〗 DEGREESf→T) with ΦISC of about unity. The emission efficiency of System 2 complexes is superior to that of System 1 complexes, which is ascribed to the suppression of excited state distortion on the basis of the results of DFT calculations. A lower radiative decay rate of System 2 palladium(II) complexes relative to the platinum(II) analogue has been found, which could be due to their lower spin-orbit coupling constant. One of the palladium(II) complexes ha

Book Synthesis  Characterization and Redox Studies of Platinum and Palladium Complexes with Mer coordinating Ligands

Download or read book Synthesis Characterization and Redox Studies of Platinum and Palladium Complexes with Mer coordinating Ligands written by Seher Kuyuldar Tastan and published by . This book was released on 2009 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthetic, structural, spectroscopic, and redox studies of platinum(II) and palladium(II) compounds with mer-coordinating ligands have been undertaken in an effort to better understand the role of the metal and the ligands in controlling d^6/d^8 electron-transfer reactions. A series of Pd(pip2NCN)X (pip2NCNH=1,3-bis(piperdylmethyl)benzene) and [Pd(pip2NNN)X]X (X=Cl, Br, I) (pip2NNN=2,6- bis(piperdyl-methyl)pyridine) complexes are reported. Electronic spectra are consistent with stabilization of ligand-to-metal-charge-transfer states as the ancillary ligand is varied along the ClBr

Book Organic Light Emitting Diodes  OLEDs

Download or read book Organic Light Emitting Diodes OLEDs written by Alastair Buckley and published by Elsevier. This book was released on 2013-08-31 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic light-emitting diodes (OLEDs) are opening up exciting new applications in the area of lighting and displays. OLEDs are self emissive and by careful materials and device design can generate colours across the visible spectrum. Together with simple monolithic fabrication on a range of different substrates, these diverse material properties give OLEDs key advantages over existing display and lighting technology. This important book summarises key research on materials, engineering and the range of applications of these versatile materials.Part one covers materials for OLEDs. Chapters review conjugated polymers, transparent conducting thin films, iridium complexes and phosphorescent materials. Part two discusses the operation and engineering of OLED devices. Chapters discuss topics such as highly efficient pin-type OLEDs, amorphous organic semiconductors, nanostructuring techniques, light extraction, colour tuning, printing techniques, fluorenone defects and disruptive characteristics as well as durability issues. Part three explores the applications of OLEDs in displays and solid-state lighting. Applications discussed include displays, microdisplays and transparent OLEDs, sensors and large-area OLED lighting panels.Organic light-emitting diodes (OLEDs) is a standard reference for engineers working in lighting, display technology and the consumer electronics sectors, as well as those researching OLEDs. Summarises key research on the materials, engineering and applications of OLEDs Reviews conjugated polymers, transparent conducting thin films Considers nanostructuring OLEDS for increasing levels of efficiency

Book Luminescent Palladium II  and Platinum II  Complexes with Tridentate Monoanionic and Tetradentate Dianionic Cyclometallated Ligands

Download or read book Luminescent Palladium II and Platinum II Complexes with Tridentate Monoanionic and Tetradentate Dianionic Cyclometallated Ligands written by Pui-keong Chow and published by . This book was released on 2013 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Chemistry of Some Platinum and Palladium Complexes Containing Organonitrogen Ligands

Download or read book The Chemistry of Some Platinum and Palladium Complexes Containing Organonitrogen Ligands written by Richard Dominic O'Sullivan and published by . This book was released on 1985 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Luminescent Palladium II  and Platinum II  Complexes with Tridentate Monoanionic and Tetradentate Dianionic Cyclometallated Ligands

Download or read book Luminescent Palladium II and Platinum II Complexes with Tridentate Monoanionic and Tetradentate Dianionic Cyclometallated Ligands written by Pui-keong Chow and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis and Photophysical Characterization of Tridentate C N N Platinum  II  Complexes

Download or read book Synthesis and Photophysical Characterization of Tridentate C N N Platinum II Complexes written by Deepak Ravindranathan and published by . This book was released on 2012 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: The synthesis, structure, and photophysical properties of a series of novel, highly luminescent tridentate platinum complexes with general coordination geometry of (C^N*N)-PtL are reported, where "C^N" denotes a coordination of C and N to the platinum to form a five-membered metallacycle and "N*N" denotes a coordination of two N atoms to the platinum to form a six-membered metallacycle; L is a mono anionic ligand such as halides or acetylides. Compared to the known (C^N^N)-PtL type of complexes that were reported to emit with low quantum yields, the structural modification leads to dramatic improvements in phosphorescence efficiency. For example, new complexes (C^N*N)-PtL with L = hexylacetylide and phenylacetylide emitted intensely with quantum yields of 47% and 56%, respectively, latter of which is among the highest quantum yields reported so far for cyclometalated platinum (II) complexes. Selectivity in C-H bond activation by platinum and the exact mechanism of cycloplatination are issues that still remain unclear. A series of ligands which include sp2/sp3, primary/secondary sp3 C-H bonds, and aromatic/vinylic sp2 C-H bonds with a carbon linker between the bipyridine and the carbon groups have been prepared. All ligands have been attempted for cycloplatination in glacial acetic acid and acetonitrile. All ligands produced the same sp2 C-H bond activated complex in both solvents, which suggests that the linker atom does play a role on selectivity.

Book Synthesis and Reactivity of Nickel  Palladium  and Platinum Phosphine Complexes with Hydridoamido  Hydridophenoxo  and Dithiooxalato Ligands

Download or read book Synthesis and Reactivity of Nickel Palladium and Platinum Phosphine Complexes with Hydridoamido Hydridophenoxo and Dithiooxalato Ligands written by Robert L. Cowan and published by . This book was released on 1989 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Small Molecule Binding to Electrophilic Trigonal Pyramidal Platinum  Palladium  and Nickel

Download or read book Small Molecule Binding to Electrophilic Trigonal Pyramidal Platinum Palladium and Nickel written by Charlene Tsay and published by . This book was released on 2013 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1 A general introduction to the concepts and background of several types of transition metal complexes that motivate and inform the research described herein. These include a-complexes and molecular adducts of dinitrogen, dihydrogen, and carbon dioxide. Chapter 2 Trigonal bipyramidal platinum(II) complexes of the monoanionic, tetradentate, triphosphine [SiPR3 ([SiP3R]- = [(2-R2PC6H4)3Si]-; R = Ph, iPr) ligand are prepared and shown to provide access to cationic species with divergent behavior. The less electron-rich phenyl-substituted ligand renders the platinum center extremely electrophilic, leading to structurally characterized examples of weakly-donating ligands bound in the fifth, apical coordination site. Of particular interest is the structure of the toluene adduct, which suggests a possible interaction between the platinum center and an aryl C-H bond. When the ligand phosphines are instead substituted by the more electron-rich isopropyl groups, the electrophilicity of the cationic platinum is shown to be mitigated, allowing access to a four-coordinate, trigonal pyramidal platinum center. The crystallographically characterized geometry for this divalent platinum is in contrast to the canonical square planar configuration for d8, 16-electron transition metal complexes. The palladium analogue is also synthesized and shown to possess the same coordination. Chapter 3 Cationic nickel complexes of the [SiPR3] ligand are synthesized and, in contrast to their platinum and palladium congeners, facilitate the surprising binding of molecular dinitrogen to electrophilic nickel(II) centers. The extremely high stretching frequencies of these bound N2 moieties attest to their minimal activation, and the stability of these complexes is shown to arise from increased adonation from the N2 to the cationic nickel center, which compensates for the relative lack of it back-bonding that stabilizes N2 adducts in less electrophilic systems. These cationic nickel species are additionally shown to form thermally stable adducts of molecular dihydrogen. The relative binding strengths of N2 and H2 to these nickel centers are explored and shown to be modulated by the ligand phosphine substituents. Furthermore, evidence of linear binding of carbon dioxide is presented, representing an electrophilic approach to carbon dioxide activation that is in contrast to the low-valent, nucleophilic metal paradigm. Chapter 4 The four-coordinate neutral nickel boratrane (TPiPrB = (2-iPr2PC6H4)3B) reported in the literature represents an isostructural counterpart to the cationic {[SiiPr3]Ni}+ species presented in Chapter 3. Though these two compounds are formally separated by two oxidation states of nickel, the Lewis-acidic nature of the Z-type borane ligand in (TP'PrB)Ni renders it valence-isoelectronic with {[SiiPr3]Ni}+. The reactivity toward N2 and H2 of (TPiPr'B)Ni, as well as that of the new compound (TPPhB)Ni, is explored and discussed in context of what is observed for the {[SiPR3]Ni}+ system. The neutral (TPiPr'B)Ni, while presumably a better [pi] back-bonder than cationic {I[SiPip' 3]Ni}T, is demonstrated not to bind N2, though a very weak, fluxional interaction with H2 at low temperature is hypothesized. The more electrophilic (TP PhB)Ni exhibits room temperature interactions with both N2 and H2, though the nature of these interactions has yet to be confirmed. These results thus underline the importance of [sigma]-donation in stabilizing N2 and H2 adducts of poorly 7r back-bonding metal centers. Chapter 5 Cobalt(I) complexes of [SiPR3] provide an additional isostructural, isoelectronic point of comparison to the cationic nickel species presented in Chapter 3. The dinitrogen adducts [SiP'i' 3]Co(N2) and [SiPPh3]Co(N2), previously reported from our laboratory, feature strongly bound N2 ligands that are not labile to vacuum. The corresponding dihydrogen adducts are generated slowly under an H2 atmosphere. The intact nature of both dihydrogen ligands, which also are not labile to vacuum, is reflected in their NMR spectroscopic parameters. The thermal stability of these compounds enabled crystallization of [SiPi'' 3]Co(H2) which, along with the related (TP'i'B)Co(H2) complex also developed in our laboratory, represent the first structurally characterized dihydrogen adducts of cobalt. Additional comparisons are made between the relative N2 and H2 binding strengths of this system and those of the structurally and electronically related family of [SiPR3] and (TpRB) metal complexes. Appendix A The asymmetric dinucleating ligand [NOPPh], designed to contain both a hard, N-donor binding site and a soft-P-donor binding site, is synthesized and shown to form a diiron complex that features asymmetric bonding to the bridging acetates. The corresponding symmetric, allphosphine dinucleating ligand [POPPh], proves to be more conducive to further study, and provides access to the symmetric diiron, di-([mu]-bromide) starting material {[POPPh ]Fe 2Br2} {BArF4 }. Addition of hydrazine generates the asymmetric, unbridged N2H4 adduct, which features localized diamagnetic and paramagnetic iron centers. The conformation of this species additionally demonstrates the flexibility of this ligand framework. Reduction of the diiron(II) starting material in the presence of PMe3 results in formation of a putative asymmetric iron(O)/iron(I) dimetallic complex, in which an N2 molecule is bound to the diamagnetic iron center, while the PMe3 is ligated to the high-spin iron center and rendered NMR silent. The N2 ligand is shown to be reversibly displaced by H2 , suggesting the formation of a dihydrogen adduct, as well as by CO2, which is postulated to bind as a bent, [eta]2(C,O) ligand.

Book Dioxygen Insertion Studies Into Platinum and Palladium Alkyl Complexes

Download or read book Dioxygen Insertion Studies Into Platinum and Palladium Alkyl Complexes written by Allan Robertson Petersen and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1 provides an overview of the oxidation of methane by platinum salts known as Shilov chemistry. This includes platinum complexes used for the selective oxidation of methane to methyl bisulfate. Attention is paid to model platinum complexes that have been synthesised to explore the oxidation of methane using dioxygen as the oxidant. Chapter 2 describes two sets of tridentate N donor ligands that have been synthesised. The first set contains 6,6"-disubsthuted-2,2/:6/,2"-terpyridine ligands, of these two new ligands 6,6"-di(methylamino)-2,2/:6/,2"-terpyridine and 6,6"-dimethoxy-2,2/:6/,2"-terpyridine have been synthesised and fully characterised. The second set contains non-terpyridine tridentate ligands. The synthesis and characterisation of novel cationic platinum(II) methyl complexes bearing these ligands is described in Chapter 3. The structures of some of these complexes have been determined by X-ray crystallography. Further, the reactivity of the complexes towards dioxygen is reported and how different reactivity is imparted by the different ligands is discussed. The ability of some of these platinum(II) methyl complexes to insert dioxygen into their M-Me bonds arises from the steric interaction between the Pt-Me ligand and the substituents in the 6- and 6"-positions on the terpyridine ligand. Chapter 4 describes a study into the mechanism of the insertion of dioxygen into a Pt-Me bond. This includes deuterium labelling experiments, which led to the discovery of the exchange of methyl ligands between platinum(II) and palladium(II) centres. A mechanism for this exchange involving the formation of a MII_MII dimer is proposed. In addition, the decomposition of a palladium(II) methylperoxo complex to give an intriguing new metallacyclic hemiacetal alkoxide complex is described. A possible mechanism for the formation of this new palladium(II) complex is discussed. The synthesis and characterisation of the new compounds discussed in Chapters 2-4 are reported in Chapter 5. 4.

Book The Synthesis and Luminescence Properties of Platinum  Palladium and Iridium Complexes Featuring Multidentate Ligands

Download or read book The Synthesis and Luminescence Properties of Platinum Palladium and Iridium Complexes Featuring Multidentate Ligands written by Melissa Teresa Walden and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

Download or read book Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties written by Eric Turner and published by . This book was released on 2014 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl components in the ligand. These complexes possess interesting luminescent properties including ultra-narrow emission and metal assisted delayed fluorescence (MADF) emission.