EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cyclic Hot Solvent Injection Method to Enhance Heavy Oil Recovery Based on Experimental Study

Download or read book Cyclic Hot Solvent Injection Method to Enhance Heavy Oil Recovery Based on Experimental Study written by Kewei Zhang and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the solvent-based heavy oil recovery methods, the cyclic solvent injection (CSI) method has been acknowledged as an effective method with high oil production rate. Oil recovery in pure solvent CSI study is as high as over 70%. However, injection pressure in the pure solvent CSI is limited by the low dew point pressure of hydrocarbon at laboratory ambient temperature condition. In the mixture gas CSI method, although the solvent dew point pressure can be raised at the ambient temperature condition, recovery factor of this method is much lower than that of pure solvent CSI method. Therefore, it is necessary to explore an alternative CSI method which takes advantage of both pure gas-based and mixture gas-based CSI methods. As raising the pure solvent injection temperature can increase the solvent dew point pressure, the idea of hot solvent CSI is experimentally tested in this study. This new type of CSI method is named the cyclic hot solvent injection method (CHSI). In the CHSI laboratory study, hot solvent can reach high initial reservoir pressure. The experimental system consists of a sand-pack model unit, injection unit, production unit and data acquisition unit. Three major topics have been studied concerning CHSI: the comparison between CHSI and the replaceable method of CHSI (the mixture gas CSI method), the comparison between CHSI and the "N-Solv" (hot vapor solvent extraction) method, and temperature sensitivity analysis in CHSI. Experimental results show that, for the first topic, oil recovery of CHSI method is much higher than it is in mixture gas CSI method; for the second topic, oil production performance of CHSI is compared with that II in N-Solv; for the third topic, three solvent injection temperature levels are compared with each other in order to study solvent temperature effect on the oil production performance. Experimental results show that the CHSI method is an effective heavy oil extraction method, because this method is superior to mixture gas CSI method and N-Solv method regarding oil recovery. Oil recovery of CHSI is hardly influenced by solvent injection temperature. However, solvent injection temperature positively affects oil production rate during early CSI production period.

Book Experimental and Mathematical Studies of Cyclic Solvent Injection To Enhance Heavy Oil Recovery

Download or read book Experimental and Mathematical Studies of Cyclic Solvent Injection To Enhance Heavy Oil Recovery written by Zhongwei Du and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been suggested that Cyclic Solvent Injection (CSI) is a highly promising technique to recover heavy oil resources at which other recovery techniques are not economically or efficiently available. Therefore, it is necessary to conduct experimental and mathematical studies on the CSI for effective heavy oil recovery purposes. Experimental and data regression studies have been conducted to investigate the effects of the wormhole on the CSI. Nine tests were completed using three sand-pack physical models with different dimensions. Experimental results suggest that the oil production can be divided into two phases: solvent chamber rising phase and solvent chamber spreading phase. The average production rate in the solvent chamber rising phase is proportional to the wormhole length, while the average production rate in the solvent chamber spreading phase does not change much with the wormhole length. In addition, a relation of the oil production rate to the drainage height is obtained by regression analysis and verified with a different experiment. It is suggested that for a rectangular model, the oil production rate in the chamber rising phase is proportional to h1.1667. Experimental study of effects of pressure decline rate on the CSI has been performed. Twelve tests with ten decline rates through linear and non-linear pressure-drawdown methods were conducted. Results of optimizing the pressure decline rate indicated that the pressure decline rate plays a primary role in the CSI by affecting solvent chamber growth, foamy oil flow performance in Phase 1, and pressure drop force in Phase 2. Different driving mechanisms in different phases lead to different optimum pressure decline rates. Comparison of two pressure-drawdown methods suggests that the main difference between the non-linear pressure-drawdown method and linear pressuredrawdown method is that the former cannot provide a continuous driving force for diluted oil as well as the latter. The effect of the intermittent driving force is much more significant in Phase 2. Therefore, production performance of tests of pressure-drawdown linearly was generally better than that of tests of pressure-drawdown non-linearly. A linear material balance equation of CSI has been proposed to obtain the recovery factor of diluted oil. It is successfully used to obtain the recovery factor of diluted oil of each cycle for a well-designed CSI test in a rectangular physical model (80×40×20 cm3). The relation of the solution-gas oil ratio and the diluted oil formation volume factor with pressure under non-equilibrium state are obtained through linear regression based the material balance equation. They are successfully verified through experimental data of a CSI test in a cylindrical model. Results indicate that the efficiency of oil dilution increases from 4.75% to 10.70% before the Cycle 10. Then it slightly varies from 10% to 16.25% till the Cycle 25. It is dramatically decreased 10.11% in the last five cycles. For first three cycles, the diluted oil recovery factor is up to 40% due to extended production time. Then it almost keeps around 32% till the Cycle 25. Three mixture solvent with the decline rate of 12.5 kPa/min ,5 kPa/min and 1 kPa/min have been conducted. Knowledge of production performance of mixture solvent CSI tests is obtained through the comparison of mixture solvent tests with different decline rate and the comparison between mixture and pure solvent tests. Pure solvent tests had larger recovery factor and average oil production per cycle than mixture solvent tests. The asphaltene precipitation and production time significantly impacted the recovery factor of diluted oil in mixture solvent tests.

Book An Improved Vapour Solvent Injection Technique for Enhanced Heavy Oil Recovery

Download or read book An Improved Vapour Solvent Injection Technique for Enhanced Heavy Oil Recovery written by Tao Jiang and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Coupling of Hydrocarbon Solvents of Hot Water for Enhanced Heavy Oil Recovery

Download or read book Coupling of Hydrocarbon Solvents of Hot Water for Enhanced Heavy Oil Recovery written by Weiguo Luo and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the International Field Exploration and Development Conference 2022

Download or read book Proceedings of the International Field Exploration and Development Conference 2022 written by Jia'en Lin and published by Springer Nature. This book was released on 2023-08-05 with total page 7600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 12th International Field Exploration and Development Conference (IFEDC 2022). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.

Book Sustainable In Situ Heavy Oil and Bitumen Recovery

Download or read book Sustainable In Situ Heavy Oil and Bitumen Recovery written by Mohammadali Ahmadi and published by Elsevier. This book was released on 2023-03-24 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable In-Situ Heavy Oil and Bitumen Recovery: Techniques, Case Studies, and Environmental Considerations delivers a critical reference for today’s energy engineers who want to gain an accurate understanding of anticipated GHG emissions in heavy oil recovery. Structured to break down every method with introductions, case studies, technical limitations and summaries, this reference gives engineers a look at the latest hybrid approaches needed to tackle heavy oil recoveries while calculating carbon footprints. Starting from basic definitions and rounding out with future challenges, this book will help energy engineers collectively evolve heavy oil recovery with sustainability applications in mind. Explains environmental footprint considerations within each recovery method Includes the latest hybrid methods such as Hybrid of Air-CO2N2 and Cyclic Steam Stimulation (CSS) Bridges practical knowledge through case studies, summaries and remaining technical challenges

Book Experimental and Numerical Investigation of Cyclic Solvent Injection  CSI  Performance in Heavy Oil Systems In The Presence of Wormhole Networks

Download or read book Experimental and Numerical Investigation of Cyclic Solvent Injection CSI Performance in Heavy Oil Systems In The Presence of Wormhole Networks written by Nathan Abraham David and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs

Download or read book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs written by Xiaohu Dong and published by Elsevier. This book was released on 2021-10-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs, Volume 73 systematically introduces these technologies. As the development of heavy oil reservoirs is emphasized, the petroleum industry is faced with the challenges of selecting cost-effective and environmentally friendly recovery processes. This book tackles these challenges with the introduction and investigation of a variety of hybrid EOR processes. In addition, it addresses the application of these hybrid EOR processes in onshore and offshore heavy oil reservoirs, including theoretical, experimental and simulation approaches. This book will be very useful for petroleum engineers, technicians, academics and students who need to study the hybrid EOR processes, In addition, it will provide an excellent reference for field operations by the petroleum industry. Introduces emerging hybrid EOR processes and their technical details Includes case studies to help readers understand the application potential of hybrid EOR processes from different points-of-view Features theoretical, experimental and simulation studies to help readers understand the advantages and challenges of each process

Book Application of Different Types of Solvents for Heavy Oil Recovery

Download or read book Application of Different Types of Solvents for Heavy Oil Recovery written by Kwang Hoon Baek and published by . This book was released on 2020 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various challenges in heavy oil recovery come from the low mobility of reservoir oil. For example, the heavy-oil displacement by water results in a large mobility ratio and therefore, inefficient volumetric sweep. Polymer flooding is the traditional method to improve the frontal stability of the oil displacement, but the polymer mobility is often optimized to be greater than the oil mobility because increasing the polymer viscosity adversely affects the oil production rate. The low mobility of reservoir oil also results in a large amount of steam required in steam-assisted gravity drainage (SAGD), one of the commercially successful methods of bitumen recovery. This research investigated the application of unconventional solvents for heavy oil recovery, such as dimethyl ether (DME), organic alkalis, and surface active solvents (SAS), as a potential additive to the injection fluid. These solvents are not conventionally used for enhanced oil recovery (EOR). The first part of the dissertation presents potential methods of improving the efficiency of SAGD by using water-soluble solvents. Phase-behavior data were obtained for mixtures of bitumen and water-soluble solvents. Experimental results indicated that use of organic alkalis at low concentrations (e.g., 0.5 wt% pyrrolidine) in low-salinity brine can yield efficient emulsification of bitumen in water. The affinity of the organic alkali for asphaltic bitumen was important for oil-in-water emulsification at a wide range of temperatures. The second part of the dissertation presents a potential method of improving polymer flooding by SAS that reduces the interfacial tension (IFT) between the oleic and aqueous phases. Results showed that the IFT reduction by three orders of magnitude (i.e., 15.8 to 0.025 dynes/cm) gave a reduced residual oil saturation and a delayed polymer breakthrough in polymer flooding experiments with no preceding water flood. When the straight polymer flooding resulted in an oil recovery factor of 47% at 1.0 pore-volume injected (PVI), the SAS-improved polymer flooding increased it to 63% with a SAS slug of 0.1 wt% for 0.5 PVI or 0.5 wt% for 0.1 PVI

Book Subsurface Upgrading of Heavy Crude Oils and Bitumen

Download or read book Subsurface Upgrading of Heavy Crude Oils and Bitumen written by Cesar Ovalles and published by CRC Press. This book was released on 2019-07-24 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy crude oils and bitumen represent more than 50% of all hydrocarbons available on the planet. These feedstocks have a low amount of distillable material and high level of contaminants that make their production, transportation, and refining difficult and costly by conventional technologies. Subsurface Upgrading of Heavy Crude Oils and Bitumen is of interest to the petroleum industry mainly because of the advantages compared to aboveground counterparts. The author presents an in-depth account and a critical review of the progress of industry and academia in underground or In-Situ upgrading of heavy, extra-heavy oils and bitumen, as reported in the patent and open literature. This work is aimed to be a standalone monograph, so three chapters are dedicated to the composition of petroleum and fundamentals of crude oil production and refining. Key Features: Offers a multidisciplinary scope that will appeal to chemists, geologists, biologists, chemical engineers, and petroleum engineers Presents the advantages and disadvantages of the technologies considered Discusses economic and environmental considerations for all the routes evaluated and offers perspectives from experts in the field working with highlighted technologies

Book Lab to Field Scale Modeling of Low Temperature Air Injection with Hydrocarbon Solvents for Heavy oil Recovery in Naturally Fractured Reservoirs

Download or read book Lab to Field Scale Modeling of Low Temperature Air Injection with Hydrocarbon Solvents for Heavy oil Recovery in Naturally Fractured Reservoirs written by Jose R. Mayorquin-Ruiz and published by . This book was released on 2015 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alternatives for enhanced oil recovery processes in heavy oil containing deep naturally fractured reservoirs (NFR) are limited due to excessive heat losses when steam is injected. Air injection at high temperature oxidation conditions (in-situ combustion) has been considered as an alternative to aqueous based thermal applications. However, its implementation has serious limitations including poor areal distribution of injected air and poor combustion efficiency due to the heterogeneous nature of these reservoirs as well as the safety risk of unconsumed injected oxygen (O2) reaching the production wells. Taking advantage of the low cost and availability of air, one option is to use air at low temperature conditions (low temperature oxidation, LTO) as a pressurizing agent in NFR. Oxygenated compounds are generated at these conditions resulting in oil viscosity increase, reducing fluid mobility. In order to minimize this detrimental effect, a combination of air injection with hydrocarbon solvents can be applied. The objectives of this thesis are to evaluate air injection at LTO conditions in NFR containing heavy oil as a way to improve oil recovery, to clarify the effect of hydrocarbon solvent addition into air on oil recovery and O2 consumption, and to propose optimal conditions (temperature, air/solvent ratio) and implementation strategies for an efficient use of this suggested method. Comprehensive laboratory and numerical simulation studies were conducted to achieve these objectives. Static diffusion experiments--simulating cyclic gas injection (huff-and-puff)--were carried out by soaking heavy oil saturated cores into a reactor filled with gas representing a matrix/fracture system. Oil recovery and O2 consumption were the main parameters assessed and an extensive set of variables including rock type, temperature, fracture volume, solvent type, matrix size, gas injection sequences, and soaking times were studied. From experimental studies, the following conclusions were made: 1.Gas sequence design affects oil recovery, 2.O2 consumption in air cycles is higher after the core is soaked into butane rather than propane, 3.It is beneficial to soak cores in air+C3 mixture rather than pure air or solvent; i.e., lower O2 concentration in produced gas, less solvent usage, higher and faster oil recovery compared to alternate injection of air and C3. Then, core scale numerical simulation models were created for modeling lab experiments for a sensitivity analysis on Air/C3 ratio and matrix size. The results show that the process is extremely sensitive to matrix size and optimization of air injection (assisted by hydrocarbon solvents) can be achieved based on the minimized hydrocarbon solvent for a given matrix size. Additionally, a sensitivity analysis was performed using an up-scaled numerical model to the field scale containing meter-scale matrix blocks. It was observed that oil production mechanisms acting in a matrix block surrounded by gas filling the fractures are predominantly gas-oil gravity drainage, effective diffusion, and voidage replacement of oil by gas. Finally, a numerical simulation sector model of a hypothetical NFR was created and several air-gas injection sequences were analyzed. It was concluded that injection of air (LTO conditions) and propane represents an alternative for heavy oil recovery from NFRs at the field scale, and an optimum production time/soaking time ratio can be obtained for given gas injection sequences (type of gas and injection/soaking durations), temperature, and block sizes.

Book Thermal Methods

    Book Details:
  • Author : Abdolhossein Hemmati-Sarapardeh
  • Publisher : Gulf Professional Publishing
  • Release : 2023-04-18
  • ISBN : 0128219343
  • Pages : 462 pages

Download or read book Thermal Methods written by Abdolhossein Hemmati-Sarapardeh and published by Gulf Professional Publishing. This book was released on 2023-04-18 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Methods, Volume Two, the latest release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in this fast-growing area. In the book, different techniques are described in addition to the latest technologies in data mining and hybrid processes. Supported field case studies are included to illustrate a bridge between research and practical applications, making it useful for both academics and practicing engineers. Structured to start with thermal concepts and steam flooding, the book's editors then advance to more complex content, guiding engineers into areas such as hybrid thermal methods and edgier technologies that bridge solar and nuclear energy. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest research developments and field applications to drive innovation for the future of energy. Presents the latest understanding surrounding the updated research and practical applications specific to thermal enhanced oil recovery methods Provides an analysis of editors’ research on available technology, including hybrid thermal-solvent processes and dual pipe configurations Teaches about additional methods, such as data mining applications, and economic and environmental considerations

Book Experimental Study of the Effect of Composite Solvent and Asphaltenes Contents on Efficiency of Heavy Oil Recovery Processes at Injection of Light Hydrocarbons

Download or read book Experimental Study of the Effect of Composite Solvent and Asphaltenes Contents on Efficiency of Heavy Oil Recovery Processes at Injection of Light Hydrocarbons written by Dmitry N. Borisov and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The current state of research in the field of solvent injection techniques for increase of heavy oil production efficiency is discussed in the chapter. As a result of a series of experiments on the physical modeling of oil displacement processes in a porous medium in large-sized model, features of asphaltene precipitation and the formation of fixed residual oil upon injection of solvent based on light alkanes are revealed. The oil displacement by n-hexane was studied and the difference in the composition of residual oil in the zones of dispersion and diffusion has been shown. The influence of the composition of asphaltenes peculiarities on the dynamics of oil recovery and on the accumulated oil recovery during the injection of n-hexane, as well as the composition and quantity of asphaltenes precipitated in the porous medium, has been estimated. The effect of toluene and nonylphenol additives on the proportion of asphaltenes in the residual oil and cumulative oil recovery has been evaluated using the Ashalchinskoye field oil as an example of heavy oil in the physical modeling of injection of n-hexane as the base solvent.

Book Polymer Flooding

Download or read book Polymer Flooding written by W. Littmann and published by Elsevier. This book was released on 1988-09-01 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10 to 15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. The basic mechanisms of the process are described and criteria given where it may be employed. Basic elements of the chemistry of EOR-polymers are provided. The fundamentals of polymer physics, such as rheology, flow in porous media and adsorption, are derived. Practical hints on mixing and testing of polymers in the laboratory are given, as well as instructions for their application in the oil field. Polymer flooding is illustrated by some case histories and the economics of the methods are examined. For the essential subjects, example calculations are added. An indispensable book for reservoir engineers, production engineers and laboratory technicians within the petroleum industry.

Book Processing of Heavy Crude Oils

Download or read book Processing of Heavy Crude Oils written by Ramasamy Marappa Gounder and published by . This book was released on 2019-12-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Petroleum Geosciences  Indian Contexts

Download or read book Petroleum Geosciences Indian Contexts written by Soumyajit Mukherjee and published by Springer. This book was released on 2015-05-19 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book incorporates original and review articles on several aspects of petroleum geosciences from Indian terrains, both onshore and offshore, and includes diverse geological (tectonic, sedimentological, organic geochemical, paleontological, stratigraphic, modelling and various others), geophysical methods and policy aspects.