EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cu In Ga  S Se  2 Solar Cells with Varied Hetero Contact Configuration

Download or read book Cu In Ga S Se 2 Solar Cells with Varied Hetero Contact Configuration written by Johannes Schoneberg and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Physics of Cu In Ga Se2 Solar Cells and Their Layer Components

Download or read book Optical Physics of Cu In Ga Se2 Solar Cells and Their Layer Components written by Abedl-Rahman Ibdah and published by . This book was released on 2016 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polycrystalline Cu(In1-xGax)Se2 (CIGS) thin film technology has emerged as a promising candidate for low cost and high performance solar modules. The efficiency of CIGS solar cells is strongly influenced by several key factors. Among these factors include Ga composition and its profile in the absorber layer, copper content in this layer, and the solar cell multilayer structure. As a result, tools for the characterization of thin film CIGS solar cells and their layer components are becoming increasingly essential in research and manufacturing. Spectroscopic ellipsometry is a non-invasive technique that can serve as an accurate probe of component layer optical properties and multilayer structures, and can be applied as a diagnostic tool for real-time, in-line, and off-line monitoring and analysis in small area solar cell fabrication as well as in large area photovoltaics manufacturing. Implementation of spectroscopic ellipsometry provides unique insights into the properties of complete solar cell multilayer structures and their layer components. These insights can improve our understanding of solar cell structures, overcome challenges associated with solar cell fabrication, and assist in process monitoring and control on a production line. In this dissertation research, Cu(In,Ga)Se2 films with different Cu contents have been prepared by the one stage co-evaporation process. These films have been studied by real time spectroscopic ellipsometry (RTSE) during deposition, and by in-situ SE at the deposition temperature as well as at room temperature to extract the dielectric functions (e1, e2) of the thin film materials. Analytical expressions for the room temperature dielectric functions were developed, and the free parameters that describe these analytical functions were in turn expressed as functions of the Cu content. As a result of this parameterization, the dielectric function spectra (e1, e2) can be predicted for any desired composition within the range of the samples investigated. This capability was applied for mapping the structural and compositional variations of CIGS thin films deposited over a 10 cm × 10 cm substrate area. In another application presented in this dissertation, a non-invasive method utilizing ex-situ spectroscopic ellipsometry analysis has been developed and applied to determine non-destructively the Ga compositional profile in CIGS absorbers. The method employs parameterized dielectric function spectra (e1, e2) of CIGS versus Ga content to probe the compositional variation with depth into the absorber. In addition, a methodology for prediction of the external quantum efficiency (QE) including optical gains and losses for a CIGS solar cell has been developed. The methodology utilizes ex-situ spectroscopic ellipsometry analysis of a complete solar cell, with no free parameters, to deduce the multilayer solar cell structure non-invasively and simulate optical light absorption in each of the layer components. In the case of high efficiency CIGS solar cells, with minimal electronic losses, QE spectra are predicted from the sum of optical absorption in the active layer components. For such solar cells with ideal photo-generated charge carrier collection, the SE-predicted QE spectra are excellent representation of the measured ones. Since the QE spectra as well as the short circuit current density (Jsc) can be calculated directly from SE analysis results, then the predicted QE from SE can be compared with the experimental QE to evaluate electronic losses based on the difference between the spectra. Moreover, the calculated Jsc can be used as a key parameter for the design and optimization of anti-reflection coating structures. Because the long term production potential of CIGS solar modules may be limited by the availability of indium, it becomes important to reduce the thickness of the CIGS absorber layer. Thickness reduction would reduce the quantity of indium required for production which would in turn reduce costs. A decrease in short-circuit current density (Jsc) is expected, however, upon thinning the CIGS absorber due to incomplete absorption. To clarify the limits of obtainable Jsc in ultra-thin CIGS solar cells with Mo back contacts, optical properties and multilayer structural data are deduced via spectroscopic ellipsometry analysis and used to predict the QE spectra and maximum obtainable Jsc values upon thinning the absorber. Moreover, SE-guided optical design of ultra-thin CIGS solar cells has been demonstrated. In the case of solar cells fabricated on Mo, thinning the absorber in a CIGS solar cell is associated with significant optical losses in the Mo containing back contact layers. This is due in part to the poor optical reflectance of Mo. Such optical losses may be reduced by employing a back contact design with improved reflectance. Thus, alternative novel solar cell structures with ultra-thin absorbers and improved back contact reflectance have been designed and investigated using SE and the optical modeling methods. In addition to optical losses, electronic losses in the ultra-thin solar cells have been evaluated. By separating the absorber layer into sub-layer regions (for example, near-junction, bulk, and near-back-contact) and varying carrier collection probability in these regions, the contribution of each region to the current can be estimated. Based on this separation, the origin of the electronic losses has been identified as near the back contact.

Book Chalcogenide Photovoltaics

Download or read book Chalcogenide Photovoltaics written by Roland Scheer and published by John Wiley & Sons. This book was released on 2011-03-31 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first comprehensive description of the most important material properties and device aspects closes the gap between general books on solar cells and journal articles on chalcogenide-based photovoltaics. Written by two very renowned authors with years of practical experience in the field, the book covers II-VI and I-III-VI2 materials as well as energy conversion at heterojunctions. It also discusses the latest semiconductor heterojunction models and presents modern analysis concepts. Thin film technology is explained with an emphasis on current and future techniques for mass production, and the book closes with a compendium of failure analysis in photovoltaic thin film modules. With its overview of the semiconductor physics and technology needed, this practical book is ideal for students, researchers, and manufacturers, as well as for the growing number of engineers and researchers working in companies and institutes on chalcogenide photovoltaics.

Book Cu In1 xGax Se2 Based Thin Film Solar Cells

Download or read book Cu In1 xGax Se2 Based Thin Film Solar Cells written by Subba Ramaiah Kodigala and published by Academic Press. This book was released on 2011-01-03 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cu(In1-xGax)Se2 Based Thin Film Solar Cells provides valuable contents about the fabrication and characterization of chalcopyrite Cu(In1-xGax)Se2 based thin film solar cells and modules. The growth of chalcopyrite Cu(In1-xGax)(S1-ySey)2 absorbers, buffers, window layers, antireflection coatings, and finally metallic grids, which are the sole components of solar cells, is clearly illustrated. The absorber, which contains multiple elements, segregates secondary phases if the growth conditions are not well optimized i.e., the main drawback in the fabrication of solar cells. More importantly the solutions for the growth of thin films are given in detail. The properties of all the individual layers and single crystals including solar cells analyzed by different characterization techniques such as SEM, AFM, XPS, AES, TEM, XRD, optical, photoluminescence, and Raman spectroscopy are explicitly demonstrated. The electrical analyses such as conductivities, Hall mobilities, deep level transient spectroscopy measurements etc., provide a broad picture to understand thin films or single crystals and their solar cells. The book clearly explains the working principle of energy conversion from solar to electrical with basic sciences for the chalcopyrite based thin film solar cells. Also, it demonstrates important criteria on how to enhance efficiency of the solar cells and modules. The effect of environmental factors such as temperature, humidity, aging etc., on the devices is mentioned by citing several examples. - Illustrates a number of growth techniques to prepare thin film layers for solar cells - Discusses characterization techniques such as XRD, TEM, XPS, AFM, SEM, PL, CL, Optical measurements, and Electrical measurements - Includes I-V, C-V measurements illustrations - Provides analysis of solar cell efficiency - Presents current trends in thin film solar cells research and marketing

Book Defect Spectroscopy on Cu In  Ga  S  Se 2 based Heterojunction Solar Cells

Download or read book Defect Spectroscopy on Cu In Ga S Se 2 based Heterojunction Solar Cells written by Carsten Deibel and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Growth and Characterisation of Cu In  Ga Se2 Thin Films for Solar Cell Applications

Download or read book Growth and Characterisation of Cu In Ga Se2 Thin Films for Solar Cell Applications written by E. Ahmed and published by . This book was released on 1995 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhancement of Cu In  Ga Se2 Solar Cells and Materials Via the Incorporation of Silver

Download or read book Enhancement of Cu In Ga Se2 Solar Cells and Materials Via the Incorporation of Silver written by Scott A. Little and published by . This book was released on 2012 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Cu(In, Ga)Se2 (CIGS) technology has proven itself to be a worthy solar cell technology, research efforts have redoubled to explore ways to enrich the already mature technology or create spin-offs of the technology with specific goals for manufacturing in mind. CIGS technology is now at an efficiency and production level that is competitive with other second generation solar cell devices and c-Si. Further research in CIGS allows for a toolbox of new ideas to try in the technology. This work aims at that goal by generating and presenting many ideas on how that may be possible. Primarily, this work contains information concerning the improvement of the manufacturing process using a hybrid sputter deposition chamber for scaling up and allowing for easy in situ monitoring using ellipsometry. It also explores the possibility of the addition of Ag to enhance and control device behavior and properties, and investigates the concept of a two-stage process with a co-sputtering deposition chamber. Monitoring of Ag in situ and in real time was explored to possibly improve the back contact of solar cells that use Ag as a back contact (not necessarily CIGS) and as a potential precursor for nanocrystals.time was explored to possibly improve the back contact of solar cells that use Ag as a back contact (not necessarily CIGS) and as a potential precursor for nanocrystals.

Book New Deposition Process of Cu In  Ga Se2 Thin Films for Solar Cell Applications

Download or read book New Deposition Process of Cu In Ga Se2 Thin Films for Solar Cell Applications written by Himal Khatri and published by . This book was released on 2009 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molybdenum (Mo) is currently the most common material used for Cu(In, Ga)Se2 solar cell back contacts. The first objective of this study is to utilize in-situ and ex-situ characterization techniques to investigate the growth, as well as the physical and chemical properties, of Mo thin films deposited by RF magnetron sputtering onto soda-lime glass (SLG) substrates. The effects of the deposition pressure on the nucleation and growth mechanisms that ultimately influence morphology and grain structure have been studied. Correspondence between real time spectroscopic ellipsometry (RTSE), X-ray diffraction (XRD), atomic force microscopy (AFM), and four-point probe resistivity measurements indicate that increasing deposition pressure leads to smaller average grain sizes and higher oxygen content in the Mo thin films. Changes of the material properties were also evaluated by changing RF power. It is observed that higher RF power, results in higher conductivity films. The second and overall objective of this work is to focus on the deposition and characterization of the Cu(In, Ga)Se2 absorber layer using the hybrid co-sputtering and evaporation process, which has potential for commercial PV. Solar cells were completed with a range of elemental compositions in the absorber layer, keeping a constant profile of Ga and varying Cu concentrations. The slightly Cu deficient Cu(In, Ga)Se2 films of band gap ~1.15 eV fabricated by this process consist of a single chalcopyrite phase and device efficiencies up to 12.4% were achieved for the composition ratios (x, y) = (0.30, 0.88). Correspondence between energy dispersive X-ray spectroscopy (EDS), X-ray diffraction, transmission and reflection (T & R), four-point probe resistivity, and current density-voltage (J-V) measurements indicate that increased Cu concentration leads to the incorporation of a secondary phase Cu2-xSe compound in the Cu(In, Ga)Se2 films, which is detrimental to cell performance. The third objective of this work is to evaluate the Cu2-xSe material properties by employing in-situ RTSE, as well as ex-situ SE and various other characterization techniques. SE revealed that the dielectric function spectra of Cu2-xSe evolve with temperature, providing insights into the evolution of transport properties and critical point structures. At room temperature, semi-metallic behavior of Cu2-xSe thin films was revealed by SE and Hall Effect measurements. These characteristics serve as key inputs for optical modeling of complex layer structures of Cu(In, Ga)Se2 films grown by 2- and 3-step processes.

Book Optimization of Top Contact for Cu In Ga Se2 Solar Cells

Download or read book Optimization of Top Contact for Cu In Ga Se2 Solar Cells written by Grace Cherukara Rajan and published by . This book was released on 2018 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanocoatings Nanosystems Nanotechnologies

Download or read book Nanocoatings Nanosystems Nanotechnologies written by Alexander D. Pogrebnjak and published by Bentham Science Publishers. This book was released on 2012-09-17 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Reference eBook deals with an existing classification of a nanosized structure and an analysis of its properties. It summarizes an information about how a grain size affects physical, mechanical, thermal, and other properties of a nanostructured material. A basic method, which is employed for a fabrication of an isolated nanoparticle, an ultradisperse powder, a compact nanocystalline, nanoporous, and amorphous material, a fullerene, a nanotube, and a nanostuctured coating, is considered. Investigation methods, which are applied to study the nanostructured material, are briefly described. A modern understanding of a formation of the nanostructured and nanocomposite coating, which are fabricated using a ion-plasma deposition method, is reposted. A potential application of the nanostructured material and coating in a field of engineering is demonstrated. Readership: Graduate, Postgraduate, Ph.D. Students, Researchers and Industry Professionals. The eBook contains 9 Chapters, 87 Figures, 14 Tables, 411 References-totally, 155 Pages. It was approved by two Scientific Boards from National Kharkov University and Sumy State University. A main content of this eBook is a basis for lectures presented for students at Sumy State University (the Physical-Technical Faculty), Kharkov National University (the Physical Faculty), Omsk State University (the Physical Faculty, the Department of Material Science), East-Kazakhstan State Technical University (Ust-Kamenogorsk, Kazakhstan), and Moscow State University (the Physical Faculty, Moscow, Russia). A source of this eBook is original papers of leading world-known scientists, who ware involved in a field of new nano composite material fabrication, nanotechnologies, and researches. This version had not been published elsewhere. It is interesting for a wide circle of specialists, Masters, aspirants, scientific researchers, and a technical staff of Higher Education System, Research Institutes and Laboratories. It covers recent data since 2008 to 2010 year.

Book Spectral Response of Cu In  Ga Se2 Solar Cells

Download or read book Spectral Response of Cu In Ga Se2 Solar Cells written by Brian Egaas and published by . This book was released on 2010 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Role of the Heterointerfaces in the Cu In  Ga Se2 Thin Film Solar Cell with Chemical Bath Deposited Buffer Layers

Download or read book The Role of the Heterointerfaces in the Cu In Ga Se2 Thin Film Solar Cell with Chemical Bath Deposited Buffer Layers written by Hong-Quang Nguyen and published by . This book was released on 2004 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solar Power Generation

Download or read book Solar Power Generation written by P. Jayarama Reddy and published by CRC Press. This book was released on 2012-03-22 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a global perspective of the current state of affairs in the field of solar power engineering. In four parts, this well-researched volume informs about: Established solar PV (photovoltaic) technologies Third-generation PV technologies based on new materials with potential for low-cost large-scale production Solar cell technology based on new (third-generation) concepts, such as quantum dot solar cells and nano wire solar cells using silicon and compound semiconductors Economic implications and effects, as well as policies and incentives in various countries of the world involved with solar energy implementation In addition to discussing manufacturing facts and implementation issues, this book emphasizes the implications of policy measures in countries with good PV activity, such as Japan, China, India, Germany, Spain, France, Italy, the United States, and Canada. This volume is intended as a reference for a global audience of advanced students and R&D and industry professionals, as well as investors and policy-makers with fundamental knowledge of photovoltaic technology.

Book Integration of Highly Reflective Back Contacts in Microstructured Cu In  Ga Se2 Solar Cells

Download or read book Integration of Highly Reflective Back Contacts in Microstructured Cu In Ga Se2 Solar Cells written by Thomas Schneider and published by . This book was released on 2023* with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis deals with the introduction of a highly-reflective back contact in Cu(In,Ga)Se2 (CIGSe) based solar cells. Such a back contact can be used to compensate for the optical losses, which correspond with such a reduction. Such a reduction would enable a cost reduction of this solar cell type. It was demonstrated that an Al/ITO-based back contact has compared to the regularly used Mo-back contact a considerably increased reflection. Interestingly, the investigated back contact is also compatible with process temperatures as high as 600°C. The described back contact was also combined with a nanostructured substrate. Finally, the measured data was furthermore used to obtain general insights into the admittance spectroscopy of CIGSe solar cells.

Book Optimisation of Cu In Ga Se 1tn2 Thin Film Solar Cells and Modules for Low Irradiance Conditions

Download or read book Optimisation of Cu In Ga Se 1tn2 Thin Film Solar Cells and Modules for Low Irradiance Conditions written by Alessandro Virtuani and published by . This book was released on 2004 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: