Download or read book Acids and Bases written by Brian G. Cox and published by OUP Oxford. This book was released on 2013-01-31 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented. Fundamental background material is provided in the initial chapters: quantitative aspects of acid-base equilibria, including definitions and relationships between solution pH and species distribution; the influence of molecular structure on acid strengths; and acidity in aqueous solution. Solvent properties are reviewed, along with the magnitude of the interaction energies of solvent molecules with (especially) ions; the ability of solvents to participate in hydrogen bonding and to accept or donate electron pairs is seen to be crucial. Experimental methods for determining dissociation constants are described in detail. In the remaining chapters, dissociation constants of a wide range of acids in three distinct classes of solvents are discussed: protic solvents, such as alcohols, which are strong hydrogen-bond donors; basic, polar aprotic solvents, such as dimethylformamide; and low-basicity and low polarity solvents, such as acetonitrile and tetrahydrofuran. Dissociation constants of individual acids vary over more than 20 orders of magnitude among the solvents, and there is a strong differentiation between the response of neutral and charged acids to solvent change. Ion-pairing and hydrogen-bonding equilibria, such as between phenol and phenoxide ions, play an increasingly important role as the solvent polarity decreases, and their influence on acid-base equilibria and salt formation is described.
Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.
Download or read book Perovskite Photovoltaics written by Aparna Thankappan and published by Academic Press. This book was released on 2018-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
Download or read book The Future of Semiconductor Oxides in Next Generation Solar Cells written by Monica Lira-Cantu and published by Elsevier. This book was released on 2017-09-19 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Future of Semiconductor Oxides in Next-Generation Solar Cells begins with several chapters covering the synthesis of semiconductor oxides for NGSCs. Part II goes on to cover the types and applications of NGSCs currently under development, while Part III brings the two together, covering specific processing techniques for NGSC construction. Finally, Part IV discusses the stability of SO solar cells compared to organic solar cells, and the possibilities offered by hybrid technologies. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of semiconductor oxides in next generation solar cells. - Unlocks the potential of advanced semiconductor oxides to transform Next Generation Solar Cell (NGSC) design - Full coverage of new developments and recent research make this essential reading for researchers and engineers alike - Explains the synthesis and processing of semiconductor oxides with a view to their use in NGSCs
Download or read book Emerging Solar Energy Materials written by Sadia Ameen and published by BoD – Books on Demand. This book was released on 2018-08-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the fundamental understanding of the functioning of solar cellsand the materials for the effective utilization of energy resources. The main objective of writing this book is to create a comprehensive and easy-to-understand source of information on the advances in the rapidly growing research on solar cells. Emerging Solar Energy Materials comprises 12 chapters written by the experts in the solar cell field and is organized with the intention to provide a big picture of the latest progress in the solar cell field and at the same time give an in-depth discussion on fundamentals of solar cells for interested audiences. In this book, each part opens with a new author's essay highlighting their work for contribution toward solar energy. Critical, cutting-edge subjects are addressed, including: Photovoltaic device technology and energy applications; Functional solar energy materials; New concept in solar energy; Perovskite solar cells; Dye-sensitized solar cells; Organic solar cells; Thin-film solar cells. The book is written for a large and broad readership including researchers and university graduate students from diverse backgrounds such as chemistry, physics, materials science, and photovoltaic device technology. The book includes enough information on the basics to be used as a textbook undergraduate coursework in engineering and the sciences.
Download or read book Nanoscale Semiconductor Lasers written by Cunzhu Tong and published by Elsevier. This book was released on 2019-08-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. - Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications - Demonstrates how to connect different classes of material to specific applications - Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities
Download or read book Perovskite Photovoltaics and Optoelectronics written by Tsutomu Miyasaka and published by John Wiley & Sons. This book was released on 2022-03-21 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.
Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.
Download or read book Perovskite Solar Cells written by Shahzada Ahmad and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices. Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers.
Download or read book Printable Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2017-04-19 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.
Download or read book Hybrid Organic Inorganic Perovskites written by Aline Ferreira and published by John Wiley & Sons. This book was released on 2020-10-19 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.
Download or read book Metal Halide Perovskite Crystals Growth Techniques Properties and Emerging Applications written by Wei Zhang and published by MDPI. This book was released on 2019-01-31 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Metal Halide Perovskite Crystals: Growth Techniques, Properties and Emerging Applications" that was published in Crystals
Download or read book Halide Perovskite Semiconductors written by Yuanyuan Zhou and published by John Wiley & Sons. This book was released on 2023-12-22 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Halide Perovskite Semiconductors Enables readers to acquire a systematic and in-depth understanding of various fundamental aspects of halide perovskite semiconductors Halide Perovskite Semiconductors: Structures, Characterization, Properties, and Phenomena covers the most fundamental topics with regards to halide perovskites, including but not limited to crystal/defect theory, crystal chemistry, heterogeneity, grain boundaries, single-crystals/thin-films/nanocrystals synthesis, photophysics, solid-state ionics, spin physics, chemical (in)stability, carrier dynamics, hot carriers, surface and interfaces, lower-dimensional structures, and structural/functional characterizations. Included discussions on the fundamentals of halide perovskites aim to expand the basic science fields of physics, chemistry, and materials science. Edited by two highly qualified researchers, Halide Perovskite Semiconductors includes specific information on: Crystal/defect theory of halide perovskites, crystal chemistry of halide perovskites, and processing and microstructures of halide perovskites Single-crystals of halide perovskites, nanocrystals of halide perovskites, low-dimensional perovskite crystals, and nanoscale heterogeneity of halide perovskites Carrier mobilities and dynamics in halide perovskites, light emission of halide perovskites, photophysics and ultrafast spectroscopy of halide perovskites Hot carriers in halide perovskites, correlating photophysics with microstructures in halide perovskites, chemical stability of halide perovskites, and solid-state ionics of halide perovskites Readers can find solutions to technological issues and challenges based on the fundamental knowledge gained from this book. As such, Halide Perovskite Semiconductors is an essential in-depth treatment of the subject, ideal for solid-state chemists, materials scientists, physical chemists, inorganic chemists, physicists, and semiconductor physicists.
Download or read book Organic Inorganic Halide Perovskite Photovoltaics written by Nam-Gyu Park and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers fundamentals of organometal perovskite materials and their photovoltaics, including materials preparation and device fabrications. Special emphasis is given to halide perovskites. The opto-electronic properties of perovskite materials and recent progress in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.
Download or read book Semiconductor Materials for Solar Photovoltaic Cells written by M. Parans Paranthaman and published by Springer. This book was released on 2015-09-16 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry
Download or read book Functional Materials for Sustainable Energy Applications written by J A Kilner and published by Elsevier. This book was released on 2012-09-28 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production.Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials.With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. - An essential guide to the development and application of functional materials in sustainable energy production - Reviews functional materials for solar power - Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage
Download or read book Hybrid Perovskite Composite Materials written by Imran Khan and published by Woodhead Publishing. This book was released on 2020-10-22 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Composite Perovskite Materials: Design to Applications discusses the manufacturing, design and characterization of organic-inorganic perovskite composite materials. The book goes beyond the basics of characterization and discusses physical properties, surface morphology and environmental stability. Users will find extensive examples of real-world products that are suitable for the needs of the market. Following a logical order, the book begins with mathematical background and then covers innovative approaches to physical modeling, analysis and design techniques. Numerous examples illustrate the proposed methods and results, making this book a sound resource on the modern research application of perovskite composites with real commercial value. - Discusses the composition of perovskite materials and their properties, manufacturing and environmental stability - Includes both fundamentals and state-of-the-art developments - Features the main types of applications, including solar cells, photovoltaics, sensors and optoelectronic devices