EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

Download or read book Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments written by and published by . This book was released on 2006 with total page 92505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

Book Theory of Tokamak Plasmas

Download or read book Theory of Tokamak Plasmas written by R.B. White and published by Elsevier. This book was released on 2017-01-31 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate textbook on tokamak physics, designed to provide a basic introduction to plasma equilibrium, particle orbits, transport, and those ideal and resistive magnetohydrodynamic instabilities which dominate the behavior of a tokamak discharge, and to develop the mathematical methods necessary for their theoretical analysis.

Book Impurity Transport in Tokamak Plasmas

Download or read book Impurity Transport in Tokamak Plasmas written by Peter Donnel and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Impurity transport is an issue of utmost importance for tokamaks. Indeed high-Z materials are only partially ionized in the plasma core, so that they can lead to prohibitive radiative losses even at low concentrations, and impact dramatically plasma performance and stability. On-axis accumulation of tungsten has been widely observed in tokamaks.While the very core impurity peaking is generally attributed to neoclassical effects, turbulent transport could well dominate in the gradient region at ITER relevant collisionality. Up to recently, first principles simulations of corresponding fluxes were performed with different dedicated codes, implicitly assuming that both transport channels are separable and therefore additive. The validity of this assumption is questionned. Simulations obtained with the gyrokinetic code GYSELA have shown clear evidences of a neoclassical-turbulence synergy for impurity transport and allowed the identification of a mechanism that underly this synergy.An analytical work allows to compute the level and the structure of the axisymmetric part of the electric potential knowing the turbulence intensity. Two mechanisms are found for the generation of poloidal asymmetries of the electric potential: flow compressibility and the ballooning of the turbulence. A new prediction for the neoclassical impurity flux in presence of large poloidal asymmetries and pressure anisotropies has been derived. A fair agreement has been found between the new theoretical prediction for neoclassical impurity flux and the results of a GYSELA simulation displaying large poloidal asymmetries and pressure anisotropies induced by the presence of turbulence.

Book First principle Description of Collisional Gyrokinetic Turbulence in Tokamak Plasmas

Download or read book First principle Description of Collisional Gyrokinetic Turbulence in Tokamak Plasmas written by Guilhem Dif-Pradalier and published by . This book was released on 2008 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: AS A HOT RAREFIED MEDIUM, A TOKAMAK PLASMA IS CRUCIALLY AFFECTED BY WAVE–PARTICLE RESONANCES, TRAPPING PHENOMENA, ORBIT EFFECTS AND IS INTRINSICALLY LOW COLLISIONAL. AS SUCH, ANY FULLY SELF-CONSISENT DESCRIPTION OF ITS RESPONSE IS THEREFORE KINETIC, AND INCLUDES COLLISIONS. THOUGH THEY LEAD TO USUALLY SMALLER TRANSPORT THAN THE ONE GENERATED BY THE TURBULENCE, ONE MAY NOT CONCLUDE ON COLLISIONS BEING NEGLIGIBLE. THE DISCOVERY OF HIGH-CONFINEMENT REGIMES –WHICH SEEM UNIVERSAL AND REPRODUCIBLE FEATURES OF FUSION DEVICES AND AS SUCH ARE THE FORESEEN OPERATING SCENARI FOR ITER– HAS LED TO A RENEWED INTEREST IN COLLISIONAL THEORIES. THESE REGIMES ARE INDEED CHARACTERISED BY A LOCAL STRONG REDUCTION OF THE TURBULENT ACTIVITY; IN THAT CASE, THE TRANSPORT PROCESSES MAY GET VERY CLOSE TO BEING COLLISIONAL. BINARY INTERACTIONS ARE ALSO IMPORTANT FEATURES FOR A KINETIC THEORY SINCE THEY ALONE MAY PROVIDE A CORRECT DESCRIPTION OF EQUILIBRIUM flOWS. SUCH LARGE-SCALE SHEARED flOWS ARE OF SPECIAL RELEVANCE FOR THE SATURATION MECHANISMS OF THE TURBULENCE, POTENTIALLY LEADING TO HIGH-CONfiNEMENT REGIMES. AT LAST, THERE SEEMS TO EXIST A NON TRIVIAL INTERACTION BETWEEN COLLISIONS AND TURBULENCE IN TOKAMAK-RELEVANT OPERATING REGIMES. THROUGH THESE PROCESSES, COLLISIONS MIGHT INDIRECTLY HAVE A STRONG INflUENCE ON THE ACTUAL LEVEL OF TRANSPORT; ELUCIDATING THIS INTERPLAY IS A SUBJECT OF GREAT CURRENT FOCUS FOR FIRST-PRINCIPLE MODELING.

Book Neoclassical Simulation of Tokamak Plasmas Using Continuum Gyrokinetc Code TEMPEST

Download or read book Neoclassical Simulation of Tokamak Plasmas Using Continuum Gyrokinetc Code TEMPEST written by and published by . This book was released on 2007 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ([psi], [theta], [epsilon], [mu]) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.

Book Gyrokinetic Neoclassical Study of the Bootstrap Current in the Tokamak Edge Pedestal with Fully Non linear Coulomb Collisions

Download or read book Gyrokinetic Neoclassical Study of the Bootstrap Current in the Tokamak Edge Pedestal with Fully Non linear Coulomb Collisions written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator--that conserves mass, momentum, and energy--is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

Book Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks

Download or read book Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks written by Pierre Manas and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding impurity transport in the core of tokamak plasmas is central to achieving controlled fusion. Indeed impurities are ubiquitous in these devices and their presence in the core are detrimental to plasma confinement (fuel dilution, Bremsstrahlung). Recently, specific attention was given to the convective mechanism related to the gradient of the toroidal rotation to explain experimental flat/hollow impurity profiles in the plasma core. In this thesis, up-to-date modelling tools (NEO for neoclassical transport and GKW for turbulent transport) including the impact of toroidal rotation are used to study both the neoclassical and turbulent contributions to impurity fluxes. A comparison of the experimental and modelled carbon density peaking factor (R/LnC) is performed for a large number of baseline and hybrid H-mode plasmas (increased confinement regimes) with modest to high toroidal rotation from the European tokamak JET. Confrontation of experimental and modelled carbon peaking factor yields two main results. First roto-diffusion is found to have a nonnegligible impact on the carbon peaking factor at high values of the toroidal rotation frequency gradient. Second, there is a tendency to overpredict the experimental R/LnC in the core inner region where the carbon density profiles are hollow. This disagreement between experimental and modelled R/LnC, closely related to the collisionality, is also observed for the momentum transport channel which hints at a common parallel symmetry breaking mechanism lacking in the simulations.

Book Advances in Comprehensive Gyrokinetic Simulations of Transport in Tokamaks

Download or read book Advances in Comprehensive Gyrokinetic Simulations of Transport in Tokamaks written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite [beta], equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ([rho]{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

Book Turbulence and Transport Measurements in Alcator C Mod and Comparisons with Gyrokinetic Simulations

Download or read book Turbulence and Transport Measurements in Alcator C Mod and Comparisons with Gyrokinetic Simulations written by Paul Chappell Ennever and published by . This book was released on 2016 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence in tokamak plasmas is the primary means by which energy is transported from the core of the plasma to the edge, where it is lost, and is therefore the main limitation of tokamak plasma performance. Dilution of the main-ion species was found to have a stabilizing effect on ion gyroradius scale turbulence in tokamak plasmas. Dilution of deuterium tokamak plasmas is the reduction of the ratio of the deuterium ion density to the electron density, nD=ne, to less than 1.0 through the introduction of low-Z impurity species into the plasma. Controlled dilution experiments were performed on Alcator C-Mod wherein plasmas at a range of electron density and plasma current were seeded with nitrogen while a cryopump held the electron density fixed. The electron density fluctuations due to turbulence were monitored using a phase contrast imaging (PCI) diagnostic, an absolutely calibrated diagnostic that measures the line-integral of the electron density fluctuations along 32 vertical chords. In these experiments the seeding reduced the PCI density fluctuations, and had a stabilizing effect on the ion energy transport. The seeding also reversed the direction of intrinsic rotation in certain cases. Nonlinear simulations using the gyrokinetic turbulence code GYRO were performed using measured kinetic profiles from the dilution experiments both before and after the nitrogen seeding. The GYRO simulations reproduced the observed reduction in the turbulent ion energy transport with the nitrogen seeding. The GYRO simulated turbulent density fluctuations were compared to the PCI measurements using a synthetic diagnostic, and they were found to be consistent. GYRO simulations were also performed varying only the main ion dilution to explore the theoretical effects of the dilution on energy transport. Through this it was found that the dilution reduced the turbulent ion energy transport in a wide variety of cases, but primarily increased the critical gradient at low densities, and primarily reduced the stiffness of the transport at high densities. This dilution effect is related to observations of reductions in energy transport from seeding on other tokamaks, and will likely have an impact on ITER and future fusion reactors.

Book ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

Download or read book ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS written by R. E. WALTZ and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

Book Annual Highlights

Download or read book Annual Highlights written by Princeton University. Plasma Physics Laboratory and published by . This book was released on 2006 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory of Fusion Plasmas

    Book Details:
  • Author : Olivier Sauter
  • Publisher : American Institute of Physics
  • Release : 2008-12-02
  • ISBN : 9780735406001
  • Pages : 400 pages

Download or read book Theory of Fusion Plasmas written by Olivier Sauter and published by American Institute of Physics. This book was released on 2008-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1993 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1992-04 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book INIS Atomindeks

Download or read book INIS Atomindeks written by and published by . This book was released on 1988 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: