EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Coupling Interface for Physics to System Simulations

Download or read book Coupling Interface for Physics to System Simulations written by Michael Lee Leimon and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A new interfacial code was developed to couple the reactor physics code PARCS/AGREE to the systems level code MELCOR, with a goal of enabling state- of-art transient event analysis for high temperature gas reactor designs. Following the completion of this new code, it was then demonstrated by running two different coupled simulations, one of which was a transient event. The resultant code is capable of coupling spatial power profiles, point kinetics information and transient reactivity values from PARCS/AGREE to MELCOR by means of input/output file manipulation. The coupling demonstrations were between PBMR400 models that were designed to have an equivalent core region nodalization to that which was used in the OECD/NEA PBMR400 benchmark, thus allowing for comparisons. The accessible coupled simulation output results as extracted from MELCOR appeared to be overly generalized. Even so, the axial profiles from the coupled steady-state demonstration were in good agreement with the axial profiles of other OECD/NEA participants. Conversely, the coupled transient simulations showed a suspect, maximum average nodal component temperature rise of approximately 0.4K from a 3+$ reactivity insertion. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148367

Book Advances in Multi Physics and Multi Scale Couplings in Geo Environmental Mechanics

Download or read book Advances in Multi Physics and Multi Scale Couplings in Geo Environmental Mechanics written by Francois Nicot and published by Elsevier. This book was released on 2017-11-20 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale

Book Multiphysics Modeling  Numerical Methods and Engineering Applications

Download or read book Multiphysics Modeling Numerical Methods and Engineering Applications written by Qun Zhang and published by Elsevier. This book was released on 2015-12-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. - Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume - Provides a go-to resource for coupling and multiphysics problems - Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others - Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering

Book High resolution Simulations of Strongly Coupled Coulomb Systems with a Parallel Tree Code

Download or read book High resolution Simulations of Strongly Coupled Coulomb Systems with a Parallel Tree Code written by Mathias Winkel and published by Forschungszentrum Jülich. This book was released on 2013 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory and Simulation in Physics for Materials Applications

Download or read book Theory and Simulation in Physics for Materials Applications written by Elena V. Levchenko and published by Springer Nature. This book was released on 2020-02-14 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unique and comprehensive overview of the latest advances, challenges and accomplishments in the rapidly growing field of theoretical and computational materials science. Today, an increasing number of industrial communities rely more and more on advanced atomic-scale methods to obtain reliable predictions of materials properties, complement qualitative experimental analyses and circumvent experimental difficulties. The book examines some of the latest and most advanced simulation techniques currently available, as well as up-to-date theoretical approaches adopted by a selected panel of twelve international research teams. It covers a wide range of novel and advanced materials, exploring their structural, elastic, optical, mass and electronic transport properties. The cutting-edge techniques presented appeal to physicists, applied mathematicians and engineers interested in advanced simulation methods in materials science. The book can also be used as additional literature for undergraduate and postgraduate students with majors in physics, chemistry, applied mathematics and engineering.

Book Topics in Experimental Dynamic Substructuring  Volume 2

Download or read book Topics in Experimental Dynamic Substructuring Volume 2 written by Randy Mayes and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Experimental Dynamics Substructuring, Volume 2: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the second volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Substructures SEM Substructures Wind Turbine Testbed – Blade Modeling & Correlation Substructure Methods SEM Substructures Wind Turbine Testbed Frequency Based Substructures Fixed Base Substructure Methods Substructure Methods SEM Substructures Wind Turbine Testbed Frequency Based Substructures Fixed Base Substructure Methods

Book The Princeton Companion to Applied Mathematics

Download or read book The Princeton Companion to Applied Mathematics written by Nicholas J. Higham and published by Princeton University Press. This book was released on 2015-09-15 with total page 1031 pages. Available in PDF, EPUB and Kindle. Book excerpt: The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index

Book Modeling of Physiological Flows

Download or read book Modeling of Physiological Flows written by Davide Ambrosi and published by Springer Science & Business Media. This book was released on 2012-10-31 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a mathematical update of the state of the art of the research in the field of mathematical and numerical models of the circulatory system. It is structured into different chapters, written by outstanding experts in the field. Many fundamental issues are considered, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls, and the different scales coupling local and systemic dynamics. All of these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and efficient simulation techniques, and pay constant attention to applications of relevant clinical interest. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling the cardiovascular system or, more broadly, physiological flows.

Book Multiphysics in Porous Materials

Download or read book Multiphysics in Porous Materials written by Zhen (Leo) Liu and published by Springer. This book was released on 2018-07-12 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes, defines, and contextualizes multiphysics with an emphasis on porous materials. It covers various essential aspects of multiphysics, from history, definition, and scope to mathematical theories, physical mechanisms, and numerical implementations. The emphasis on porous materials maximizes readers’ understanding as these substances are abundant in nature and a common breeding ground of multiphysical phenomena, especially complicated multiphysics. Dr. Liu’s lucid and easy-to-follow presentation serve as a blueprint on the use of multiphysics as a leading edge technique for computer modeling. The contents are organized to facilitate the transition from familiar, monolithic physics such as heat transfer and pore water movement to state-of-the-art applications involving multiphysics, including poroelasticity, thermohydro-mechanical processes, electrokinetics, electromagnetics, fluid dynamics, fluid structure interaction, and electromagnetomechanics. This volume serves as both a general reference and specific treatise for various scientific and engineering disciplines involving multiphysics simulation and porous materials.

Book Multiphysics Modeling with Application to Biomedical Engineering

Download or read book Multiphysics Modeling with Application to Biomedical Engineering written by Z. Yang and published by CRC Press. This book was released on 2020-07-22 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to introduce the simulation of various physical fields and their applications for biomedical engineering, which will provide a base for researchers in the biomedical field to conduct further investigation. The entire book is classified into three levels. It starts with the first level, which presents the single physical fields including structural analysis, fluid simulation, thermal analysis, and acoustic modeling. Then, the second level consists of various couplings between two physical fields covering structural thermal coupling, porous media, fluid structural interaction (FSI), and acoustic FSI. The third level focuses on multi-coupling that coupling with more than two physical fields in the model. Each part in all levels is organized as the physical feature, finite element implementation, modeling procedure in ANSYS, and the specific applications for biomedical engineering like the FSI study of Abdominal Aortic Aneurysm (AAA), acoustic wave transmission in the ear, and heat generation of the breast tumor. The book should help for the researchers and graduate students conduct numerical simulation of various biomedical coupling problems. It should also provide all readers with a better understanding of various couplings.

Book Modelling and Simulation of Multibody Systems with Unilateral Contact

Download or read book Modelling and Simulation of Multibody Systems with Unilateral Contact written by Albert Peiret Gimenez and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Models based on bodies that interact with each other are also known as multibody systems. Such models are proven to be very useful for representing the motion of many different kinds of systems, from industrial machinery to the human body. In many cases, rigid bodies can be employed if their deformation is negligible compared to their displacement, which significantly reduces the complexity of the model. Moreover, numerical simulations of multibody systems can be very efficient, and be used for real-time interactive applications in engineering and computer animation. The focus of this thesis is on the modelling and simulation of multibody systems, with especial emphasis to unilateral contact and friction between the bodies. The inherent non-smooth nature of contact is approached using the concept of unilateral constraints, which leads the system dynamics to formulate linear complementarity problems. However, these formulations can present inconsistencies when Coulomb friction is used to model contact, which can compromise the solvability of the dynamic equations and the numerical simulation as well. Here, the contact problem is analyzed using a novel representation of the generalized friction cone that is able to capture different phenomena, such as the Painlevé paradox. The framework of this work largely relies on formulations at the impulse-momentum level of multibody system dynamics. Implicit integration schemes make the numerical simulation of such systems stable, as well as robust. Additionally, constraint regularization also helps the model to cope with redundancy of the contact forces. A new regularized friction model based on the bristle approach is presented, which models the flexibility of the system at the contact interface, and is able to capture the static behavior of friction, or sticking. Moreover, other techniques that facilitate the simulation of large scale systems are also proposed herein. Substructuring of multibody systems groups the bodies into subsystems, which allows the system dynamics to be solved in different processing units (CPUs), and reduces the computational time by performing the operations in parallel. This is achieved by means of formulating the effective mass of the system at the coupling interfaces, which can also be used to couple the simulation to other systems of different nature and time-scale, such as hydraulic systems. Interestingly, co-simulation of such multi-physics systems is currently in the spotlight of many engineering applications ranging from virtual prototyping to simulation with hardware in the loop"--

Book System level Modeling of MEMS

Download or read book System level Modeling of MEMS written by Oliver Brand and published by John Wiley & Sons. This book was released on 2012-12-20 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.

Book Electromechanical Coupling Theory  Methodology and Applications for High Performance Microwave Equipment

Download or read book Electromechanical Coupling Theory Methodology and Applications for High Performance Microwave Equipment written by Baoyan Duan and published by John Wiley & Sons. This book was released on 2022-11-15 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromechanical Coupling Theory, Methodology and Applications for High-Performance Microwave Equipment Electromechanical Coupling Theory, Methodology, and Applications for High-Performance Microwave Equipment is an authoritative and up-to-date guide to the structural, mechanical, and electrical aspects of electromechanical coupling. Addressing control, electromagnetism, and structural engineering, this comprehensive reference covers the electromechanical coupling of high-performance microwave electronic equipment (MEE), such as antennas, radar, large radio telescopes, and telecommunication and navigation equipment. The book is divided into four main sections, beginning with an introduction to electromechanical coupling (EMC) theory and a detailed description of the multi-field coupling model (MFCM) and the influence mechanism (IM) of nonlinear factors of antenna-servo-feeder systems on performance. Subsequent sections discuss MFCM- and IM-based design methodology, EMC-based measurement and testing, computer software for coupling analysis and design of electronic equipment, and various engineering applications of EMC theory and the IM of typical electronic equipment. In addition, the book: Discusses information and data transfer in electromagnetic fields, mechanical and structural deformation fields, and temperature fields Explains how high-performance microwave electronic equipment differs from traditional mechanical equipment Addresses EMC-based and general design-vector based optimization of electronic equipment design Describes applications such as a gun-guided radar system for warships and a large-diameter antenna for moon exploration Includes evaluation criteria to validate MFCM/IM design theory and methodology Electromechanical Coupling Theory, Methodology, and Applications for High-Performance Microwave Equipment is essential reading for circuit designers, microwave engineers, researchers working with high-frequency microwave engineering, and engineers working with integrated circuits in radar, communications, IoT, antenna engineering, and remote sensing.

Book Scientific Computing in Electrical Engineering

Download or read book Scientific Computing in Electrical Engineering written by Andreas Bartel and published by Springer. This book was released on 2016-05-09 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification. this book="" will="" appeal="" to="" mathematicians="" and="" electrical="" engineers.="" it="" offers="" a="" valuable="" starting="" point="" for="" developers="" of="" algorithms="" programs="" who="" want="" learn="" about="" recent="" advances="" in="" other="" fields="" as="" well="" open="" problems="" coming="" from="" industry.="" moreover,="" be="" use="" representatives="" industry="" with="" an="" interest="" new="" program="" tools="" mathematical="" methods.

Book Fluid Mechanics of Environmental Interfaces  Second Edition

Download or read book Fluid Mechanics of Environmental Interfaces Second Edition written by Carlo Gualtieri and published by CRC Press. This book was released on 2012-11-21 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmental Fluid Mechanics (EFM) studies the motion of air and water at several different scales, the fate and transport of species carried along by these fluids, and the interactions among those flows and geological, biological, and engineered systems. EFM emerged some decades ago as a response to the need for tools to study problems of flow and transport in rivers, estuaries, lakes, groundwater and the atmosphere; it is a topic of increasing importance for decision makers, engineers, and researchers alike. The second edition of the successful textbook "Fluid Mechanics of Environmental Interfaces" is still aimed at providing a comprehensive overview of fluid mechanical processes occurring at the different interfaces existing in the realm of EFM, such as the air-water interface, the air-land interface, the water-sediment interface, the surface water-groundwater interface, the water-vegetation interface, and the water-biological systems interface. Across any of these interfaces mass, momentum, and heat are exchanged through different fluid mechanical processes over various spatial and temporal scales. In this second edition, the unique feature of this book, considering all the topics from the point of view of the concept of environmental interface, was maintained while the chapters were updated and five new chapters have been added to significantly enlarge the coverage of the subject area. The book starts with a chapter introducing the concept of EFM and its scope, scales, processes and systems. Then, the book is structured in three parts with fifteen chapters. Part one, which is composed of four chapters, covers the processes occurring at the interfaces between the atmosphere and the surface of the land and the seas, including the transport of dust and the dispersion of passive substances within the atmosphere. Part two deals in five chapters with the fluid mechanics at the air-water interface at small scales and sediment-water interface, including the advective diffusion of air bubbles, the hyporheic exchange and the tidal bores. Finally, part three discusses in six chapters the processes at the interfaces between fluids and biotic systems, such as transport processes in the soil-vegetation-lower atmosphere system, turbulence and wind above and within the forest canopy, flow and mass transport in vegetated open channels, transport processes to and from benthic plants and animals and coupling between interacting environmental interfaces. Each chapter has an educational part, which is structured in four sections: a synopsis of the chapter, a list of keywords that the reader should have encountered in the chapter, a list of questions and a list of unsolved problems related to the topics covered by the chapter. The book will be of interest to graduate students and researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics, atmospheric science, meteorology, limnology, oceanography, and applied mathematics.

Book Coupled Problems and Multi Physics

Download or read book Coupled Problems and Multi Physics written by Moussa Karama and published by Trans Tech Publications Ltd. This book was released on 2011-07-04 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume is indexed by Thomson Reuters BCI (WoS). The objective of Coupled Problems is to present and discuss the state-of-the-art mathematical models, numerical methods and computational techniques used for solving coupled problems of a multidisciplinary nature in science and engineering. The goal of the conference was to take a step forward, in the formulation and solution of real-life problems, with a multidisciplinary vision; accounting for all of the complex couplings involved in the physical description of the problem. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this special issue, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field problems leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential reference-work.

Book Fluid Dynamics  Computational Modeling and Applications

Download or read book Fluid Dynamics Computational Modeling and Applications written by L. Hector Juarez and published by BoD – Books on Demand. This book was released on 2012-02-24 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this book covers several up-to-date topics in fluid dynamics, computational modeling and its applications, and it is intended to serve as a general reference for scientists, engineers, and graduate students. The book is comprised of 30 chapters divided into 5 parts, which include: winds, building and risk prevention; multiphase flow, structures and gases; heat transfer, combustion and energy; medical and biomechanical applications; and other important themes. This book also provides a comprehensive overview of computational fluid dynamics and applications, without excluding experimental and theoretical aspects.