EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Coupled Geomechanics and Multiphase Flow Modeling in Naturally and Hydraulically Fractured Reservoirs

Download or read book Coupled Geomechanics and Multiphase Flow Modeling in Naturally and Hydraulically Fractured Reservoirs written by Yanli Pei and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid injection and production in highly fractured unconventional reservoirs could induce complex stress reorientation and redistribution. The strong stress sensitivity of fractured formations may also lead to non-negligible fracture opening or closure under the reservoir loading or unloading process. Hence, a coupled flow and geomechanics model is in high demand to assist with stress prediction and production forecast in unconventional reservoirs. In this dissertation, an enhanced geomechanics model is developed for fractured reservoirs and integrated with the in-house compositional reservoir simulator – UTCOMP for coupled flow and geomechanics modeling. The multiphase flow model is solved using the finite volume method (FVM) with an embedded discrete fracture model (EDFM) to represent flow through complex fractures. Based on static fracture assumption, the finite element method (FEM) is applied to solve the geomechanics model by incorporating fracture effects on rock deformation through pore pressure changes. An iterative coupling procedure is implemented between fluid flow and geomechanics, and the 3D coupled model is applied to predict spatiotemporal stress evolution in single-layer and multilayer unconventional reservoirs. To consider dynamic fracture properties, the geomechanics model is further enhanced by the extended finite element method (XFEM) with a modified linear elastic proppant model. The fracture surface is under the coeffects of pore pressure and proppant particles, and various enrichment functions are introduced to reproduce the discontinuous fields over fracture paths. The enhanced geomechanics model is validated against classical Sneddon and Elliot’s problem and presents a first-order spatial convergence rate. Numerical studies indicate that modeling fracture closure is necessary for poorly propped, highly stressed, or fast depleted reservoirs, and fracture opening can be significant under high permeability and low stiffness conditions. The coupled flow and geomechanics model is finally combined with a displacement discontinuity method (DDM) hydraulic fracture model to establish an integrated reservoir-geomechanics-fracture model for the end-to-end optimization of secondary stimulations. It is applied to Permian Basin and Sichuan Basin tight formations to optimize parent-child well spacing at different infill times. The integrated model provides hands-on guidelines for refracturing and infill drilling in multilayer unconventional reservoirs and can be easily adapted to other basins under their unique data

Book Multiphase Fluid Flow in Porous and Fractured Reservoirs

Download or read book Multiphase Fluid Flow in Porous and Fractured Reservoirs written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2015-09-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website

Book Modeling Flow and Geomechanics in Fractured Reservoirs

Download or read book Modeling Flow and Geomechanics in Fractured Reservoirs written by Mohamad Jammoul and published by . This book was released on 2021 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subsurface problems are inherently challenging because they involve multiple physical processes interacting with each other. Numerical models tend to break down the system into smaller problems that are easier to solve and that could be coupled within one framework. Fractured reservoirs are especially difficult to model due to the variety of physical processes that act at different scales. These processes include (1) fracture propagation, (2) flow through fractures and through the matrix, (3) hydrocarbon phase behavior, and (4) poroelastic deformations. Modeling the interaction between these processes plays an integral role in designing many energy and environmental applications. The primary objective of this work is to construct a holistic framework that can model flow and geomechanics in fractured reservoirs using computationally efficient algorithms. The framework can handle complex multiphysics problems including: multiphase flow, mechanical deformations, the capability to stimulate new fractures or activate existing ones, and the ability to seamlessly switch between propagation and production scenarios within the same simulation study. The approach includes coupling the in-house reservoir simulator (IPARS) with a phase-field fracture propagation model. In addition to hydraulic fracturing problems, the framework can model flow and geomechanics on fixed fracture networks with dynamic aperture variations. It can also simulate multiphase flow through natural fractures using general semi-structured grids. Two numerical schemes are introduced to improve the efficiency of computations. A multirate approach is proposed to enhance the performance of the L-scheme for decoupling the phase-field and displacement equations. A domain decomposition scheme is also presented to perform space-time refinement for flow through fractured reservoirs. Local time stepping and spatial mesh refinement can be used in the vicinity of the fractures while taking large grids cells with coarse time steps everywhere else in the reservoir. This motivates space and time adaptive mesh refinement in reservoir simulations

Book Coupled Flow and Geomechanics Modeling for Fractured Poroelastic Reservoirs

Download or read book Coupled Flow and Geomechanics Modeling for Fractured Poroelastic Reservoirs written by Gurpreet Singh and published by . This book was released on 2014 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tight gas and shale oil play an important role in energy security and in meeting an increasing energy demand. Hydraulic fracturing is a widely used technology for recovering these resources. The design and evaluation of hydraulic fracture operation is critical for efficient production from tight gas and shale plays. The efficiency of fracturing jobs depends on the interaction between hydraulic (induced) and naturally occurring discrete fractures. In this work, a coupled reservoir-fracture flow model is described which accounts for varying reservoir geometries and complexities including non-planar fractures. Different flow models such as Darcy flow and Reynold's lubrication equation for fractures and reservoir, respectively are utilized to capture flow physics accurately. Furthermore, the geomechanics effects have been included by considering a multiphase Biot's model. An accurate modeling of solid deformations necessitates a better estimation of fluid pressure inside the fracture. The fractures and reservoir are modeled explicitly allowing accurate representation of contrasting physical descriptions associated with each of the two. The approach presented here is in contrast with existing averaging approaches such as dual and discrete-dual porosity models where the effects of fractures are averaged out. A fracture connected to an injection well shows significant width variations as compared to natural fractures where these changes are negligible. The capillary pressure contrast between the fracture and the reservoir is accounted for by utilizing different capillary pressure curves for the two features. Additionally, a quantitative assessment of hydraulic fracturing jobs relies upon accurate predictions of fracture growth during slick water injection for single and multistage fracturing scenarios. It is also important to consistently model the underlying physical processes from hydraulic fracturing to long-term production. A recently introduced thermodynamically consistent phase-field approach for pressurized fractures in porous medium is utilized which captures several characteristic features of crack propagation such as joining, branching and non-planar propagation in heterogeneous porous media. The phase-field approach captures both the fracture-width evolution and the fracture-length propagation. In this work, the phase-field fracture propagation model is briefly discussed followed by a technique for coupling this to a fractured poroelastic reservoir simulator. We also present a general compositional formulation using multipoint flux mixed finite element (MFMFE) method on general hexahedral grids with a future prospect of treating energized fractures. The mixed finite element framework allows for local mass conservation, accurate flux approximation and a more general treatment of boundary conditions. The multipoint flux inherent in MFMFE scheme allows the usage of a full permeability tensor. An accurate treatment of diffusive/dispersive fluxes owing to additional velocity degrees of freedom is also presented. The applications areas of interest include gas flooding, CO2 sequestration, contaminant removal and groundwater remediation.

Book Hydraulic Fracture Modeling

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Book Coupled Geomechanics and Fluid Flow Model for Production Optimization in Naturally Fractured Shale Reservoirs

Download or read book Coupled Geomechanics and Fluid Flow Model for Production Optimization in Naturally Fractured Shale Reservoirs written by Jennifer S. Curnow and published by . This book was released on 2015 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Simulator with Numerical Upscaling for the Analysis of Coupled Multiphase Flow and Geomechanics in Heterogeneous and Deformable Porous and Fractured Media

Download or read book A Simulator with Numerical Upscaling for the Analysis of Coupled Multiphase Flow and Geomechanics in Heterogeneous and Deformable Porous and Fractured Media written by Daegil Yang and published by . This book was released on 2013 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: A growing demand for more detailed modeling of subsurface physics as ever more challenging reservoirs - often unconventional, with significant geomechanical particularities - become production targets has moti-vated research in coupled flow and geomechanics. Reservoir rock deforms to given stress conditions, so the simplified approach of using a scalar value of the rock compressibility factor in the fluid mass balance equation to describe the geomechanical system response cannot correctly estimate multi-dimensional rock deformation. A coupled flow and geomechanics model considers flow physics and rock physics simultaneously by cou-pling different types of partial differential equations through primary variables. A number of coupled flow and geomechanics simulators have been developed and applied to describe fluid flow in deformable po-rous media but the majority of these coupled flow and geomechanics simulators have limited capabilities in modeling multiphase flow and geomechanical deformation in a heterogeneous and fractured reservoir. In addition, most simulators do not have the capability to simulate both coarse and fine scale multiphysics. In this study I developed a new, fully implicit multiphysics simulator (TAM-CFGM: Texas A&M Coupled Flow and Geomechanics simulator) that can be applied to simulate a 2D or 3D multiphase flow and rock deformation in a heterogeneous and/or fractured reservoir system. I derived a mixed finite element formu-lation that satisfies local mass conservation and provides a more accurate estimation of the velocity solu-tion in the fluid flow equations. I used a continuous Galerkin formulation to solve the geomechanics equa-tion. These formulations allowed me to use unstructured meshes, a full-tensor permeability, and elastic stiffness. I proposed a numerical upscaling of the permeability and of the elastic stiffness tensors to gener-ate a coarse-scale description of the fine-scale grid in the model, and I implemented the methodology in the simulator. I applied the code I developed to the simulation of the problem of multiphase flow in a fractured tight gas system. As a result, I observed unique phenomena (not reported before) that could not have been deter-mined without coupling. I demonstrated the importance and advantages of using unstructured meshes to effectively and realistically model a reservoir. In particular, high resolution discrete fracture models al-lowed me to obtain more detailed physics that could not be resolved with a structured grid. I performed numerical upscaling of a very heterogeneous geologic model and observed that the coarse-scale numerical solution matched the fine scale reference solution well. As a result, I believed I developed a method that can capture important physics of the fine-scale model with a reasonable computation cost. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151194

Book An Integrated Peridynamics finite Volume Based Multi phase Flow  Geomechanics and Hydraulic Fracture Model

Download or read book An Integrated Peridynamics finite Volume Based Multi phase Flow Geomechanics and Hydraulic Fracture Model written by Shivam Agrawal and published by . This book was released on 2019 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing in unconventional reservoirs exhibits several interesting phenomena including the interaction of hydraulic fractures with multi-scale heterogeneities such as natural fractures, stress/barrier layers, bedding planes, shale laminations, and mineralogy. Moreover, hydraulic fractures originating from different clusters or stages in a multi-stage, multi-cluster treatment interact among themselves. Mathematical models, with various degrees of numerical complexity, are developed for gaining better insights into the physics governing these phenomena. Peridynamics-based hydraulic fracturing model developed by Ouchi (2016) has been demonstrated to capture all of these phenomena. However, its major drawback is that it is computationally expensive. In this dissertation, we have extended the capabilities of the model to multi-phase flow and made it significantly faster by coupling it with the less expensive Finite Volume Method. The single-phase peridynamics flow model for slightly compressible, Newtonian fluids has been generalized for multiphase, multicomponent flow of compressible, non-Newtonian fluids. The generalized flow model has been coupled with the fracturing model and compared with laboratory experiments performed under low confining stresses. The extended model is also applied to simulate the growth of fractures from a new (child) well in the presence of depleted regions created by production from the fractures of an old (parent) well under high confining stresses. The interaction of a hydraulic fracture (HF) with a natural fracture (NF) is investigated. Remote shear failure of the NF due to the pororelastic stress changes caused by the propagating HF are considered. Consistent with the experiments, the remote shear failure is shown to result in the bending of the HF towards the NF before intersecting with it. Accounting for the effects of remote shear failure and poroelasticity, numerical crossing criteria for the HF-NF interaction are developed. The hydraulic fracturing model based on peridynamics (PD) theory is coupled with the less expensive Finite Volume Method (FVM), following the PD-FEM coupling method proposed by Galvanetto et al. (2016). Significant improvements in computational performance are achieved by the coupled model relative to the pure PD-based model, without compromising the unique original capabilities. By monitoring material damage in remote heterogeneous regions, a workflow for estimating the extent of the Stimulated Reservoir Volume (SRV) around a primary hydraulic fracture is developed. A sensitivity study for the effects of elastic properties of the formation, injection rate, and the reservoir fluid type on SRV extent is presented

Book Geomechanics and Hydraulic Fracturing for Shale Reservoirs

Download or read book Geomechanics and Hydraulic Fracturing for Shale Reservoirs written by Yu Wang and published by Scientific Research Publishing, Inc. USA. This book was released on 2020-07-01 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.

Book Discrete Fracture Network Modeling of Hydraulic Stimulation

Download or read book Discrete Fracture Network Modeling of Hydraulic Stimulation written by Mark W. McClure and published by Springer Science & Business Media. This book was released on 2013-06-15 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks. The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale. Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of novel techniques to ensure efficiency and realistic model behavior are implemented, and tested. The simulation methodology can also be used as an efficient method for directly solving quasistatic fracture contact problems. Results show how stresses induced by fracture deformation during stimulation directly impact the mechanism of propagation and the resulting fracture network.

Book Coupled Geomechanics and Compositional Fluid Flow Modeling for Unconventional Oil and Gas Reservoirs

Download or read book Coupled Geomechanics and Compositional Fluid Flow Modeling for Unconventional Oil and Gas Reservoirs written by Deepen Paresh Gala and published by . This book was released on 2018 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The integration of geomechanics with multi-phase, multi-component fluid flow in porous media has several applications in the upstream oil and gas industry. It can be applied for both near wellbore and reservoir scale problems in different reservoir types. The development of a 3D geomechanics and compositional flow model coupled with fracture growth capability is presented. The partial differential equations in the reservoir, fracture and well domain are solved in a coupled manner. The model is validated/verified for different physics such as fracture growth, stress around a fracture and well, phase behavior, multiphase flow, compressible flow and poroelasticity. The model is then applied to problems specific to low permeability shale and tight reservoirs, however, the model is very general and can be applied to any subsurface hydrocarbon or water reservoir. Propagation of multiple fractures using different fluids such as slickwater, gases and foams is studied using field scale examples. The impact of variables such as fluid compressibility, viscosity, wellbore volume, reservoir permeability, stress/tensile strength ratio, and poroelasticity on fracture geometry, breakdown and shut-in behavior is investigated in detail. Production from a well and the resulting stress changes are calculated in dry gas, gas condensates, black oil and volatile oil reservoirs. Permeability changes associated with an increase in effective stress on fractures and reservoir rock are shown to have a significant impact on decline rates. The impact of water evaporation and subsequent salt precipitation on productivity in shale gas reservoirs is evaluated. A sensitivity study is performed for variables such as capillary pressure, fracture spacing, reservoir permeability, initial brine saturation, reservoir temperature and well operating BHP. A method of fluid injection (water or gas) in depleted parent wells (known as pre-loading) to minimize damage due to frac-hits is studied. The stress and pressure changes due to fluid injection are shown to be dependent on injection fluid and reservoir fluid type, injection rates and the fracture geometry in parent wells. The compositional and geomechanical effects in a Huff-n-Puff gas injection IOR process in tight oil reservoirs are investigated. The additional recovery and increase in GOR after several Huff-n-Puff cycles is shown to be a function of reservoir and injected fluid composition and hysteresis in permeability as a function of effective stress.

Book Developing Coupled Fluid Flow and Geomechanics Simulators to Model Fracture Deformation

Download or read book Developing Coupled Fluid Flow and Geomechanics Simulators to Model Fracture Deformation written by Mohsen Babazadeh and published by . This book was released on 2019 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation intends to advance fundamental understanding of two areas of interest in the petroleum industry: complex stimulated fracture network during hydraulic fracturing treatments and induced seismicity during wastewater disposal operations. Successful completion of hydraulic fractures in unconventional formations has been the primary source of increased oil and gas production in the US. However, field observations suggest that the hydraulic fracture networks are much more complex and different from the classical description of bi-wing planar fractures. Thus, the attempts to optimize this stimulation technique are hindered by the uncertainties in predicting the complex fracture network. A by-product of massive improvement in oil and gas production is a significant amount of water being co-produced from these formations. The common practice in the industry is to recycle wastewater for hydraulic fracturing purposes or reinject it into the reservoir through disposal wells. In certain regions of the US, this wastewater injection has led to historically high seismicity rates and earthquakes of Magnitude 5 and above which caused the public to be concerned. To maintain the social license to continue such operations, these concerns need to be addressed, and the physics behind such induced events need to be understood. Two novel hydraulic fracturing and induced seismicity simulators are developed that implicitly couple fluid flow with the stresses induced by fracture deformation in large, complex, three-dimensional discrete fracture networks. The simulators can describe the propagation of hydraulic fractures and opening and shear stimulation of natural fractures. Fracture elements can open or slide, depending on their stress state, fluid pressure, and mechanical properties. Fracture sliding occurs in the direction of maximum resolved shear stress. Nonlinear empirical relations are used to relate normal stress, fracture opening, and fracture sliding to fracture aperture and transmissivity. Field-scale hydraulic fracturing simulations were performed in a dense naturally fractured formation. Height containment of propagating hydraulic fractures between bedding layers is modeled with a vertically heterogeneous stress field or by explicitly imposing hydraulic fracture height containment as a model assumption. The propagating hydraulic fractures can cross natural fractures or terminate against them depending on the natural fracture orientation and stress anisotropy. The simulations demonstrate how interaction with natural fractures in the formation can help explain the high net pressures, relatively short hydraulic fracture lengths, and broad regions of microseismicity that are often observed in the field during stimulation in low permeability formations, some of which were not predicted by classical hydraulic fracturing models. Depending on input parameters, our simulations predicted a variety of stimulation behaviors, from long hydraulic fractures with minimal leakoff into surrounding fractures to broad regions of dense fracturing with a branching network of many natural and newly formed fractures. Induced seismicity simulator was developed to investigate the effects of multiple operational, hydraulic, and geophysical parameters on the magnitude of induced earthquakes. The rate-and-state framework is implemented to include the effect of fault nonlinear friction evolution and to model unstable earthquake rupture. The Embedded Discrete Fracture Model (EDFM) technique is used to model the fluid flow between the matrix and fractures efficiently. The results show that high-rate injections are more likely to induce a more significant earthquake, confirming the statistical correlation attributing induced events to high-rate injection wells. To understand the seismic occurrence outside of the injection zone, the effect of fault permeability structure on seismicity is studied by assigning non-uniform permeabilities as an input parameter. The model shows that the fault rupture is dominantly controlled by initial pressure and stress heterogeneity which ultimately affect the magnitude of an induced earthquake event

Book Unconventional Tight Reservoir Simulation  Theory  Technology and Practice

Download or read book Unconventional Tight Reservoir Simulation Theory Technology and Practice written by Qiquan Ran and published by Springer Nature. This book was released on 2020-08-14 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically introduces readers to the simulation theory and techniques of multiple media for unconventional tight reservoirs. It summarizes the macro/microscopic heterogeneities; the features of multiscale multiple media; the characteristics of complex fluid properties; the occurrence state of continental tight oil and gas reservoirs in China; and the complex flow characteristics and coupled production mechanism under unconventional development patterns. It also discusses the simulation theory of multiple media for unconventional tight oil and gas reservoirs; mathematic model of flow through discontinuous multiple media; geological modeling of discrete multiscale multiple media; and the simulation of multiscale, multiphase flow regimes and multiple media. In addition to the practical application of simulation and software for unconventional tight oil and gas, it also explores the development trends and prospects of simulation technology. The book is of interest to scientific researchers and technicians engaged in the development of oil and gas reservoirs, and serves as a reference resource for advanced graduate students in fields related to petroleum.

Book Development of a Fully Integrated Equation of State Compositional Hydraulic Fracturing and Reservoir Simulator

Download or read book Development of a Fully Integrated Equation of State Compositional Hydraulic Fracturing and Reservoir Simulator written by Shuang Zheng and published by . This book was released on 2021 with total page 928 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical modeling plays a key role in assessing, developing, and managing energy resources (such as oil, gas and heat) from subsurface formations. Fluids are injected into wellbores during hydraulic fracturing, water flooding, parent well pre-loading, and improved oil recovery. Oil, gas and water are produced back to the surface during flowback, primary/secondary/tertiary production, and geothermal operations. Results from modeling these subsurface energy resources assist engineers and geologists in the decision-making process. Geomechanics, fluid/solid flow, and heat transport are coupled in the reservoir, fracture, and wellbore domains. The purpose of this dissertation is to develop integrated hydraulic fracturing and reservoir simulator that can accurately model multi-component, multi-phase fluid flow, geomechanics, fracture propagation and thermal processes in the reservoir, fracture and wellbore domains. In this dissertation, fully coupled reservoir, fracture, and wellbore domains are modeled. Geomechanics, fluid flow, and heat transport are modeled in an integrated manner in each domain and between each domain. Thermo-poro-elasticity, fracture opening/closing, and fracture propagation are modeled based on the stresses and strains computed in the domain. Four flow types including single-phase flow, multi-phase black-oil flow, multi-phase compositional flow, and water-steam two-phase flow are developed for different applications. Temperature and enthalpy formulations are developed to model the energy balance within the fully coupled system. A novel proppant transport model formulation which couples fracture opening/closing has also been developed. The governing equations are discretized in space using the finite volume/area methods. Multiple fully implicit Newton solvers have been developed to solve different sets of nonlinear systems of equations. A fully distributed memory parallelization workflow is constructed. The simulator is also coupled with simpler (analytical and DDM) fracturing models to achieve shorter run times. The modeling capability of the simulator has been demonstrated in the dissertation through many example applications. Typical applications of the simulator include multi-stage, multi-cluster, hydraulic fracture propagation, proppant settling and fracture closure analysis, mini-frac analysis, parent-child well interference, fracture monitoring, reservoir cooling and induced fracture propagation from water injectors, production analysis, gas huff-n-puff injection, improved oil recovery, geothermal reservoir production, and enhanced geothermal system analysis. These applications demonstrate the wide variety of problems that our simulator can be used to model

Book A Coupled Geomechanics and Flow Modeling Study for Multistage Hydraulic Fracturing of Horizontal Wells in Enhanced Geothermal Systems Applications

Download or read book A Coupled Geomechanics and Flow Modeling Study for Multistage Hydraulic Fracturing of Horizontal Wells in Enhanced Geothermal Systems Applications written by Xiexiaomeng Hu and published by . This book was released on 2016 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures

Download or read book Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures written by Juan Pedro Morales Salazar and published by Springer Nature. This book was released on with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: