EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS DESIGN AND DATA FROM 241 AN 102 MULTI PROBE CORROSION MONITORING SYSTEM

Download or read book CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS DESIGN AND DATA FROM 241 AN 102 MULTI PROBE CORROSION MONITORING SYSTEM written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation.

Book Design of Multi function Hanford Tank Corrosion Monitoring System

Download or read book Design of Multi function Hanford Tank Corrosion Monitoring System written by and published by . This book was released on 1999 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank.

Book TANK 241 AN 102 MULTI PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

Download or read book TANK 241 AN 102 MULTI PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency.

Book Process Test Plan for 4TH Generation Hanford Corrosion Monitoring System

Download or read book Process Test Plan for 4TH Generation Hanford Corrosion Monitoring System written by and published by . This book was released on 2000 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instrumentation and cabinets for the 241-AN-107 and 241-AN-102 corrosion monitoring systems will be upgraded in FY 2000. The bulk of the field work involved in this task will involve placement of the corrosion monitoring data collection hardware closer to the risers that house the existing corrosion probes. This will be accomplished by placing a new climate controlled cabinet by the risers containing corrosion probes on these two tanks (one cabinet per tank). Once installed the systems will feed data back to a centralized corrosion monitoring station in the 241-AN-271 instrument building. The upgraded systems will be operated under the bounds of this Process Test Plan (PTP) for six principle reasons. These reasons were established prior to installing the original systems in 1997 (241-AN-107) and 1998 (241-AN-102). They are as follows: (1) Acquire corrosion data on the waste in 241-AN-107 and 241-AN-102. (2) Provide supporting data to the site's Integrity Assessment program. (3) Demonstrate that corrosion monitoring by evaluation of electrochemical noise data is possible in waste tank systems, particularly with regard to the detection of general corrosion and (if present) pitting and stress corrosion cracking. (4) Demonstrate the durability of the design of the corrosion monitoring equipment. (5) Extend tank life and reduce annual operations cost. (6) Provide basis to control corrosion in double shell tanks though the use of direct corrosion monitoring rather than waste sampling and analysis. The designs of the existing corrosion probes in 241-AN-107 and 241-AN-102 were reviewed and documented prior to the original installation activities in 1997 and 1998. Initial programmatic documentation for Hanford's corrosion monitoring program was also established prior to the original installation activities.

Book Design of Hanford Site 4th Generation Multi Function Corrosion Monitoring System

Download or read book Design of Hanford Site 4th Generation Multi Function Corrosion Monitoring System written by and published by . This book was released on 2000 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document describes the design of the fourth-generation corrosion monitoring system scheduled to be installed in DST 241-AN-104 early in fiscal year 2001. A fourth-generation multi-function corrosion monitoring system has been designed for installation into a DST in the 241-AN farm at the Hanford Site in FY 2001. Improvements and upgrades from the third-generation system (installed in 241-AN-105) that have been incorporated into the fourth-generation system include: Addition of a built-in water lance to assist installation of probe into tanks with a hard crust layer at the surface of the waste; and Improvement of the electrode mounting apparatus used to attach the corrosion monitoring electrodes to the stainless steel probe body (new design simplifies probe assembly/wiring). These new features improve on the third-generation design and yield a system that is easier to fabricate and install, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank.

Book PERFORMANCE OF MULTI PROBE CORROSION MONITORING SYSTEMS AT THE HANFORD SITE

Download or read book PERFORMANCE OF MULTI PROBE CORROSION MONITORING SYSTEMS AT THE HANFORD SITE written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

Book Performace of Multi Probe Corrosion Monitoring Systems at the Hanford Site

Download or read book Performace of Multi Probe Corrosion Monitoring Systems at the Hanford Site written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

Book Data Analysis and Reduction in Hanford s Corrosion Monitoring Systems

Download or read book Data Analysis and Reduction in Hanford s Corrosion Monitoring Systems written by and published by . This book was released on 1999 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995. The project is designed to integrate EN-based corrosion monitoring into the site's corrosion monitoring strategy. In order to monitor multiple tanks, a major focus of this project has been to automate the data collection and analysis process. Data collection and analysis from the early EN corrosion monitoring equipment (241-AZ-101 and 241-AN-107) was primarily performed manually by a trained operator skilled in the analysis of EN data. Thousands of raw data files were collected, manually sorted and stored. Further statistical analysis of these files was performed by manually stripping out data from thousands of raw data files and calculating statistics in a spreadsheet format. Plotting and other graphical display analyses were performed by manually exporting data from the data files or spreadsheet into another plotting or presentation software package. In 1999, an Amulet/PRP system was procured and employed on the 241-AN-102 corrosion monitoring system. A duplicate system was purchased for use on the upcoming 241-AN-105 system. A third system has been procured and will eventually be used to upgrade the 241-AN-107 system. The Amulet software has greatly improved the automation of waste tank EN data analysis. In contrast with previous systems, the Amulet operator no longer has to manually collect, sort, store, and analyze thousands of raw EN data files. Amulet writes all data to a single database. Statistical analysis, uniform corrosion rate, and other derived parameters are automatically calculated in Amulet from the raw data while the raw data are being collected. Other improvements in plotting and presentation make inspection of the data a much quicker and relatively easy task. These and other improvements have greatly improved the speed at which EN data can be analyzed in addition to improving the quality of the final interpretation. The increase in data automation offered by the Amulet software is necessary if multiple tanks are to instrumented and analyzed at the Hanford Site. Although advances in the automation of data analysis have been great, Hanford EN data analysis still demands a highly trained corrosion expert. Neural networks could de-skill the post-data collection analysis procedure and broaden the range of users able to understand and interpret corrosion data. Ultimately, the ability to de-skill data the data analysis process will make or break the use of EN as a plant monitoring tool on a wide scale.

Book Corrosion Data from Hanford High Level Waste Tank 241 AN 107

Download or read book Corrosion Data from Hanford High Level Waste Tank 241 AN 107 written by and published by . This book was released on 1999 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Document describes first year of operation of 241-AN-107 electrochemical noise based corrosion monitoring system. Data and system status are presented.

Book Hanford Prototype Corrosion Probe Operational Experience

Download or read book Hanford Prototype Corrosion Probe Operational Experience written by and published by . This book was released on 1996 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-level nuclear wastes at the Hanford Site are stored underground in carbon steel double-shell and single-shell tanks. The installation of a prototype corrosion monitoring system into double- shell tank 241-AZ-101 was completed in August, 1996. The system monitors fluctuations in corrosion current and potential (electrochemical noise) occurring on three electrode arrays immersed in the waste liquid and in the vapor space above the waste. The system also supports the use of Tafel and linear polarization resistance testing. By monitoring and analyzing the data from these techniques, changes; in the corrosive characteristics of the waste have been rapidly detected and correlated with operational changes in the tank.

Book Handelingen der Staten Generaal 1922 1925

Download or read book Handelingen der Staten Generaal 1922 1925 written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acceptance Test Plan for Fourth Generation Hanford Corrosion Monitoring System

Download or read book Acceptance Test Plan for Fourth Generation Hanford Corrosion Monitoring System written by and published by . This book was released on 2000 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Acceptance Test Plan (ATP) will document the satisfactory operation of the corrosion probe cabinets destined for installation on tanks 241-AN-102 and 241-AN-107. This ATP will be performed by the manufacturer on each cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinets to be installed on tanks 241-AN-102 and 241-AN-107. One cabinet will be installed on each tank. Each cabinet will contain corrosion monitoring hardware to be connected to existing corrosion probes already installed in each tank. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation (input a known signal and see if the instrumentation records the proper value).

Book Acceptance Test Report for Fourth Generation Hanford Corrosion Monitoring System

Download or read book Acceptance Test Report for Fourth Generation Hanford Corrosion Monitoring System written by and published by . This book was released on 2000 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Acceptance Test Report (ATR) will document the satisfactory operation of the corrosion probe cabinets destined for installation on tanks 241-AN-102 and 241-AN-107. This ATR will be performed by the manufacturer on each cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinets to be installed on tanks 241-AN-102 and 241-AN-107. One cabinet will be installed on each tank. Each cabinet will contain corrosion monitoring hardware to be connected to existing corrosion probes already installed in each tank. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation (input a known signal and see if the instrumentation records the proper value).

Book Tank 241 AZ 101 Prototype Corrosion Probe Four Month Status Report

Download or read book Tank 241 AZ 101 Prototype Corrosion Probe Four Month Status Report written by and published by . This book was released on 1996 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-level nuclear wastes at the Hanford Site are stored underground in carbon steel double-shell and single-shell tanks. The installation of a prototype corrosion monitoring system into double-shell tank 241-AZ-101 was completed in August, 1996. The system monitors fluctuations in corrosion current and potential (electrochemical noise) occurring on three electrode arrays immersed in the waste liquid and in the vapor space above the waste. The system also supports the use of Tafel and linear polarization resistance testing. By monitoring and analyzing the data from these techniques, changes in the corrosive characteristics of the waste have been rapidly detected and correlated with operational changes in the tank.

Book Design of Second Generation Hanford Tank Corrosion Monitoring System

Download or read book Design of Second Generation Hanford Tank Corrosion Monitoring System written by and published by . This book was released on 1998 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (

Book Hanford Double Shell Tank Corrosion Monitoring Instrument Tree Prototype

Download or read book Hanford Double Shell Tank Corrosion Monitoring Instrument Tree Prototype written by and published by . This book was released on 1995 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.

Book Acceptance Test Plan for the 241 AN 105 Multi function Corrosion Monitoring System

Download or read book Acceptance Test Plan for the 241 AN 105 Multi function Corrosion Monitoring System written by and published by . This book was released on 1999 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Acceptance Test Procedure (ATP) will document the satisfactory operation of the corrosion probe tree assembly destined for installation into tank 241-AN-105. This ATP will be performed by the manufacturer prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion probe tree assembly to be installed into tank 241-AN-105. The test will consist of a pressure test to verify leak tightness of the probe tree body, a continuity test of the probe tree wiring, a test of the high level detector wiring, a test of the operation of the Type K thermocouples along the probe body, and verification of operation of corrosion monitoring computer and instrumentation.