EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electronic Structure  Correlation Effects and Physical Properties of D  and F metals and Their Compounds

Download or read book Electronic Structure Correlation Effects and Physical Properties of D and F metals and Their Compounds written by Valentin Yu Irkhin and published by Cambridge Int Science Publishing. This book was released on 2007 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book includes all main physical properties of d- and f-transition-metal systems and corresponding theoretical concepts. Special attention is paid to the theory of magnetism and transport phenomena. Some examples of non-traditional questions which are treated in detail in the book: the influence of density of states singularities on electron properties; many-electron description of strong itinerant magnetism; mechanisms of magnetic anisotropy; microscopic theory of anomalous transport phenomena in ferromagnets. Besides considering classical problems of solid state physics as applied to transition metals, modern developments in the theory of correlation effects in d- and f-compounds are considered within many-electron models. The book contains, where possible, a simple physical discussion. More difficult questions are considered in Appendices.

Book Electronic Structure and Properties of Transition Metal Compounds

Download or read book Electronic Structure and Properties of Transition Metal Compounds written by Isaac B. Bersuker and published by John Wiley & Sons. This book was released on 2010-12-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.

Book Electronic transitions and correlation effects

Download or read book Electronic transitions and correlation effects written by Johan Jönsson and published by Linköping University Electronic Press. This book was released on 2020-03-17 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localization of thecarriers. Electronic topological transitions (ETT) involvechanges in the topology of a metal's Fermi surface. This thesis investigates theeffect of such electronic transitions in various materials, ranging from pureelements to complex compounds. To describe the interplay between electronic transitionsand properties of real materials,different state-of-the-art computational methods are used. The densityfunctional theory(DFT), as well as the DFT + U method, is used to calculatestructural properties. The validity of recently introduced exchange-correlationfunctionals, such as the strongly constrained and appropriately normed (SCAN)functional, is also assessed for magnetic elements. In order toinclude dynamical effects of electron interactions we use the DFT + dynamical meanfield theory (DFT + DMFT) method. Experiments in hcp-Os have reported peculiarities in the ratio betweenlattice parameters at high pressure. Previous calculations have suggested these transitions maybe related to ETTs and even crossings of core levels at ultra high pressure. Inthis thesis it is shownthat the crossing of core levels is a general feature of heavy transitionmetals. Experiments have therefore been performed to look for indications ofthis transition in Ir using X-ray absorption spectroscopy. In NiO, strongrepulsion between electrons leads to a Mott insulating state at ambientconditions. It has long been predicted that high pressure will lead to aninsulator-to-metal transition. This has been suggested to be accompanied by aloss of magnetic order, and a structural phase transition. In collaboration withexperimentalists we look for thistransition by investigating the X-ray absorption spectra as well as themagnetic hyperfine field. We find no evidence of a Mott transition up to 280GPa. In the Mott insulator TiPO4, application of external pressure has beensuggested to lead to a spin-Peierls transition at room temperature. Weinvestigate the dimerisation and the magnetic structure of TiPO4 at high pressure.As pressure is increased further, TiPO4 goes through a metal to insulatortransition before an eventual crystallographic phase transition. Remarkably, thenew high pressure phases are found to be insulators; the Mott insulating stateis restored. MAX phases are layered materials that combinemetallic and ceramic properties and feature layers of M-metal and X-C or N atomsinterconnected by A-group atoms. Magnetic MAX-phases with their low dimensionalmagnetism are promising candidates for applications in e.g., spintronics.The validity of various theoretical approaches are discussed in connection tothe magnetic MAX-phase Mn2GaC. Using DFT and DFT + DMFT we consider the hightemperature paramagnetic state, and whether the magnetic moments are formed bylocalized or itinerant electrons. Ett materials makroskopiska egenskaper, såsom ledningsförmåga, magnetiska egenskaper, kristallstrukturparametrar, etc. är relaterade till, eller till och med bestämda av elektronernas konfiguration, vilken karakteriseras av elektronstrukturen. Genom att ändra förhållandena, till exempel via tryck, temperatur, magnetiska och/eller elektriska fält, dopning, etc. är det möjligt att modifiera elektronstrukturen hos ett material, och därigenom inducera fasövergångar mellan olika magnetiska och elektron-tillstånd. Mott metall-till-isolator övergången är ett berömt exempel på en fasövergång, då ett material genomgår en omfattande, ofta flera tiopotenser, förändring i ledningsförmåga, orsakad av samspelet mellan ambulerande och lokaliserade laddningsbärare. Vid en elektronisk-topologisk övergång (eng. electronic topological transition, ETT) sker förändringar i elektronernas energifördelning vilket modifierar materialets Fermi-yta. I den här avhandlingen undersöks dylika övergångar i olika material, från rena grundämnen till komplicerade föreningar. Flera olika toppmoderna beräkningsmetoder används för att redogöra för samspelet mellan elektroniska fasövergångar och egenskaper hos riktiga material. Täthetsfunktionalterori (eng. density functional theory, DFT), samt DFT + U, har används för att beräkna strukturella egenskaper. Lämplighetsgraden i att använda nyligen publicerade exchangecorrelation- funktionaler, såsom SCAN (eng. strongly constrained and appropriately normed), för att beskriva magnetiska grundämnen undersöks även. För att inkludera dynamiska elektronkorrelationer använder vi metoden DFT + dynamisk medelfältteori (eng. dynamical mean field theory, DMFT). Experiment utförda på hcp-Os vid högt tryck visar underliga hopp i kvoten mellan gitterparametrar. Tidigare beräkningar har indikerat att dessa övergångar kan vara relaterade till elektronisk-topologiska övergångar och korsande av kärntillstånd. I den här avhandlingen visas också att korsning av kärntillstånden är en generell egenskap hos tunga övergångsmetaller. Därför utförs röntgenabsorptionsexperiment på Ir för att leta efter tecken på denna typ av övergång. Övergångsmetalloxiden NiO har sedan länge förutspåtts genomgå en isolator till metall Mott-övergång. Det har föreslagits att denna övergång sker vid höga tryck i samband med att materialets magnetiska ordning försvinner och en strukturell övergång sker. I samarbete med experimentalister letar vi efter denna övergång genom att studera röntgenabsorptionsspektra och det magnetiska hyperfina fältet. Vi ser inga indikationer på en Mott-övegång, upp till ett tryck på 280 GPa. Det har föreslagits att Mott-isolatorn TiPO4 genomgår en så kallad spin-Peierls-övergång, vid rumstemperatur, när tryck appliceras. Vi undersöker dimeriseringen och den magnetiska strukturen i TiPO4 som funktion av tryck. Vid höga tryck genomgår TiPO4 ytterligare övergångar, från en isolerande till en metallisk fas för att slutligen genomgå en strukturell övergång. De nya högtrycksfaserna visar sig anmärkningsvärt vara Mott-isolatorer. MAX-faser är en grupp material med specifik kristallstruktur, som kombinerar egenskaper från keramiska material och metaller. En MAX-fas består av lager av M –metall-atomer – och X – kol- eller kväveatomer – vilka sammanbinds av atomer från grupp A. Magnetiska MAX-faser som visar magnetiska egenskaper, liknande de för lågdimensionella material, är lovande kandidater för applikation inom exempelvis spinntronik. Den här avhandlingen undersöker lämplighetsgraden i att använda diverse teoretiska metoder för att beskriva magnetiska MAX-faser. Med hjälp av DFT och DFT + DMFT undersöker vi den paramagnetiska högtemperaturfasen och huruvida de magnetiska momenten bildas av lokaliserade eller ambulerande elektroner.

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1976 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Inorganic and Bioinorganic Chemistry

Download or read book Computational Inorganic and Bioinorganic Chemistry written by Edward I. Solomon and published by John Wiley & Sons. This book was released on 2013-02-19 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several decades there have been major advances in our ability to computationally evaluate the electronic structure of inorganic molecules, particularly transition metal systems. This advancement is due to the Moore’s Law increase in computing power as well as the impact of density functional theory (DFT) and its implementation in commercial and freeware programs for quantum chemical calculations. Improved pure and hybrid density functionals are allowing DFT calculations with accuracy comparable to high-level Hartree-Fock treatments, and the results of these calculations can now be evaluated by experiment. When calculations are correlated to, and supported by, experimental data they can provide fundamental insight into electronic structure and its contributions to physical properties and chemical reactivity. This interplay continues to expand and contributes to both improved value of experimental results and improved accuracy of computational predictions. The purpose of this EIC Book is to provide state-of-the-art presentations of quantum mechanical and related methods and their applications, written by many of the leaders in the field. Part 1 of this volume focuses on methods, their background and implementation, and their use in describing bonding properties, energies, transition states and spectroscopic features. Part 2 focuses on applications in bioinorganic chemistry and Part 3 discusses inorganic chemistry, where electronic structure calculations have already had a major impact. This addition to the EIC Book series is of significant value to both experimentalists and theoreticians, and we anticipate that it will stimulate both further development of the methodology and its applications in the many interdisciplinary fields that comprise modern inorganic and bioinorganic chemistry. This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set. This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectroscopy of Mott Insulators and Correlated Metals

Download or read book Spectroscopy of Mott Insulators and Correlated Metals written by Atsushi Fujimori and published by Springer Science & Business Media. This book was released on 1995 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: I Theory of Mott Transition and Correlated Metals.- Classification Scheme of the Metal-Insulator Transition and Anomalous Metals.- The Mott Transition: Results from Mean-Field Theory.- Some Aspects of Spin Gap in One- and Two-Dimensional Systems.- Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight.- Almost Localized Fermions and Mott-Hubbard Transitions at Non-Zero Temperature.- Anomalous Physical Properties Around Magnetic and Metal-Insulator Transitions - A Spin-Fluctuation Theory.- Exact Diagonalization Study of Strongly Correlated Electron Models: Hole Pockets and Shadow Bands in the Doped t - J Model.- II Electronic Structure.- Electronic Band Structures of LaMO3 (M = Ti, V, Cr, ..., Ni, Cu) in the Local Spin-Density Approximation.- First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: LDA + U Method.- Unrestricted Hartree-Fock Study of Perovskite-iype Transition-Metal Oxides.- Electronic Structure of Transition Metal Compounds.- Core-Level Spectroscopy in Early-Transition-Metal Compounds.- Systematics of Optical Gaps in Perovskite-iype 3d Transition Metal Oxides.- III Charge Transport and Excitations.- Optical Spectroscopy on the Mott Transition in Perovskiteiype Titanates.- Spectral Weight Transfer and Mass Renormalization in Correlated d-Electron Systems.- Charge Transport Properties of Strongly Correlated Metals near Charge Transfer Insulator to Metal Transition.- Infrared Studies of Kondo Insulator and Related Compounds.- IV Magnetic Response.- Magnetic Correlations in Doped Transition-Metal Oxides.- Spin and Charge Differentiation in Doped CuO2 Planes Observed by Cu NMR/NQR Spectra.- Orbital-Spin Coupling in V2O3 and Related Oxides.- Magnetic and Transport Properties of the Kondo Lattice Model with Ferromagnetic Exchange Coupling.- V New Materials.- Superconductivity, Magnetism and Metal-Insulator Transitions in Some Ternary and Pseudoternary 3d-, 4d-, and 5d-Metal Oxides.- NMR Studies of Superconductivity and Metal-Insulator Transition in Cu Spinel CuM2X4 (M = Rh, Ir and X = S, Se).- Index of Contributors.

Book International Tables for Crystallography  Volume I

Download or read book International Tables for Crystallography Volume I written by Christopher Chantler and published by John Wiley & Sons. This book was released on 2024-08-19 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray absorption spectroscopy and X-ray emission spectroscopy are complementary to crystallographic methods, particularly for materials science and the study of nanostructure and systems with partial disorder and partial local order, including solutions, gases, liquids, glasses and powders. This new volume of International Tables for Crystallography has nine parts and over 150 chapters contributed by a wide range of international experts. Part 1 provides a brief overview and introduction to the background of X-ray absorption spectroscopy (XAS) and experimental facilities. Part 2 discusses the quantum theory of XAS and related approaches. Part 3 describes both standard and advanced experimental methods used in XAS, X-ray emission spectroscopy (XES) and related techniques. Part 4 covers both standard and more advanced pre-processing of data. Part 5 gives an extensive overview of the analysis of experimental data. Part 6 provides details of the major software packages for data collection, reduction and analysis. Part 7 outlines the importance in science, reporting and hypothesis testing of the exchange of input and processed output data, and data deposition. It also presents excerpts of tables of data and supplementary material for XAS, pre-edge studies, X-ray absorption near-edge spectroscopy (XANES) and X-ray absorption fine structure (XAFS) studies. These tables are also available in full as online supporting information. Part 8 explores a wide range of applications of XAS in fields including materials science, physics, chemistry, biology, earth sciences, catalysis and cultural heritage. Part 9 presents definitions of the terms and quantities used, as developed by the International Union of Crystallography's Commission on XAFS. The volume has been written for the worldwide XAS community of thousands of practitioners, beamline scientists, experts and academics, and for the novice user who wishes to know what XAS and XES can do for them and how they may use these techniques for their particular purposes. The volume is therefore intended to be a self-contained, authoritative reference work that can also be used for training, learning or teaching, providing practical guidance for readers of all levels of experience. More information on the volumes in the series International Tables for Crystallography can be found at https://it.iucr.org.

Book Multiconfigurational Quantum Chemistry

Download or read book Multiconfigurational Quantum Chemistry written by Björn O. Roos and published by John Wiley & Sons. This book was released on 2016-08-03 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules.

Book Quantum Mechanical Cluster Calculations In Solid State Studies

Download or read book Quantum Mechanical Cluster Calculations In Solid State Studies written by Richard C A Catlow and published by World Scientific. This book was released on 1992-04-30 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This review volume takes an indepth look at the current research done in this important area of solid state science. Although the emphasis is on modelling the properties of definite materials, perfect crystal lattices are also considered in some detail. It is noteworthy that the review articles are written by some of the best known experts in the field.

Book Lecture Notes in Quantum Chemistry

Download or read book Lecture Notes in Quantum Chemistry written by Björn O. Roos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Quantum Chemistry" is the course material of a European Summer School in Quantum Chemistry, organized by Bj|rn O. Roos. It consists of lectures by outstanding scientists who participate in the education of students and young scientists. The book has a wider appeal as additional reading for University courses. Contents: P.-A. Malmquist: Mathematical Tools in Quantum Chemistry J. Olsen: The Method of Second Quantization P.R. Taylor: Molecular Symmetry and Quantum Chemistry B.O. Roos: The Multiconfigurational (MC) Self-Consistent Field (SCF) Theory P.E.M. Siegbahn: The Configuration Interaction Method T. Helgaker: Optimization of Minima and Saddle Points P.R. Taylor: Accurate Calculations and Calibration U. Wahlgren: Effective Core Potential Method

Book Strong Coulomb Correlations in Electronic Structure Calculations

Download or read book Strong Coulomb Correlations in Electronic Structure Calculations written by Vladimir I Anisimov and published by CRC Press. This book was released on 2000-05-30 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials where electrons show nearly localized rather than itinerant behaviour, such as the high-temperature superconducting copper oxides, or manganate oxides, are attracting interest due to their physical properties and potential applications. For these materials, the interaction between electrons, or electron correlation, plays an important rol

Book Elementary Electronic Structure

Download or read book Elementary Electronic Structure written by Walter Ashley Harrison and published by World Scientific. This book was released on 2004 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a revised edition of the 1999 text on the electronic structure and properties of solids, similar in spirit to the well-known 1980 text Electronic Structure and the Properties of Solids. The revisions include an added chapter on glasses, and rewritten sections on spin-orbit coupling, magnetic alloys, and actinides. The text covers covalent semiconductors, ionic insulators, simple metals, and transition-metal and f-shell-metal systems. It focuses on the most important aspects of each system, making what approximations are necessary in order to proceed analytically and obtain formulae for the properties. Such back-of-the-envelope formulae, which display the dependence of any property on the parameters of the system, are characteristic of Harrison's approach to electronic structure, as is his simple presentation and his provision of all the needed parameters.In spite of the diversity of systems and materials, the approach is systematic and coherent, combining the tight-binding (or atomic) picture with the pseudopotential (or free-electron) picture. This provides parameters ? the empty-core radii as well as the covalent energies ? and conceptual bases for estimating the various properties of all these systems. Extensive tables of parameters and properties are included.The book has been written as a text, with problems at the end of each chapter, and others can readily be generated by asking for estimates of different properties, or different materials, than those treated in the text. In fact, the ease of generating interesting problems reflects the extraordinary utility and simplicity of the methods introduced. Developments since the 1980 publication have made the theory simpler and much more accurate, besides allowing much wider application.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1990 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Theoretical Approaches to Strongly Correlated Systems

Download or read book New Theoretical Approaches to Strongly Correlated Systems written by Alexei M. Tsvelik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years, the physics of strongly correlated systems was considered a theorists' playground, right at the border with pure mathematics, where physicists from the `real world' did not venture. The time has come, however, when healthy physics cannot exist without these techniques and results. Lectures on selected topics in the theory of strongly correlated systems are here presented by the leading experts in the field. Topics covered include a use of the form factor approach in low-dimensional systems, applications of quantum field theory to disorder, and dynamical mean field theory. The main divisions of the book deal with: I) Quantum Critical Points; (II) Strongly Correlated One-Dimensional Systems; (III) Strong Correlations and Disorder; and (IV) Dynamical Mean Field Theory.

Book Full Potential Electronic Structure Method

Download or read book Full Potential Electronic Structure Method written by John M. Wills and published by Springer Science & Business Media. This book was released on 2010-12-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book describing electronic structure theory and application within the framework of a methodology implemented in the computer code RSPt. In 1986, when the code that was to become RSPt was developed enough to be useful, it was one of the ?rst full-potential, all-electron, relativistic implem- tations of DFT (density functional theory). While RSPt was documented p- asitically in many publications describing the results of its application, it was many years before a publication explicitly describing aspects of the method appeared. In the meantime, several excellent all-electron, full-potential me- ods had been developed, published, and become available. So why a book about RSPt now? The code that became RSPt was initially developed as a personal research tool, rather than a collaborative e?ort or as a product. As such it required some knowledge of its inner workings to use, and as it was meant to be m- imally ?exible, the code required experience to be used e?ectively. These - tributes inhibited, but did not prevent, the spread of RSPt as a research tool. While applicable across the periodic table, the method is particularly useful in describing a wide range of materials, including heavier elements and c- pounds, and its ?exibility provides targeted accuracy and a convenient and accurate framework for implementing and assessing the e?ect of new models.

Book Handbook of Magnetic Materials

Download or read book Handbook of Magnetic Materials written by K.H.J. Buschow and published by Newnes. This book was released on 2013-01-09 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few decades magnetism has seen an enormous expansion into a variety of different areas of research, notably the magnetism of several classes of novel materials that share with truly ferromagnetic materials only the presence of magnetic moments. Volume 21 of the Handbook of Magnetic Materials, like the preceding volumes, has a dual purpose. With contributions from leading authorities in the field, it includes a variety of topics which are intended as self-contained introductions to a given area in the field of magnetism without requiring recourse to the published literature. It is also intended as a reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Volume 21 comprises topical review articles covering Heusler compounds, quasicrystalline solids,bulk amorphous alloys and nanocrystalline soft-magnetic alloys. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material within the framework of physics, chemistry and material science. - Composed of topical review articles written by leading authorities - Introduces given topics in the field of magnetism - Provides the reader with novel trends and achievements in magnetism