EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Controlling the Electronic Properties in La1 3Sr2 3FeO33  delta  Complex Perovskite Oxides

Download or read book Controlling the Electronic Properties in La1 3Sr2 3FeO33 delta Complex Perovskite Oxides written by Alex L. Krick and published by . This book was released on 2017 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: For nearly 5 decades, the global semiconductor industry has followed Moore's law, which employs the iterative concept of transistor scaling in silicon-based technology. Though this approach has been massively successful at maintaining consistent increases in computational speed and power, silicon technology is quickly approaching its physical limitations with respect to continued scaling. In recent years, a growing effort has been adopted to pursue new materials and technologies as alternative platforms for information processing. Complex oxides are a potential candidate material system for next generation electronic devices due to their rich material properties such as metal-insulator transitions, high Tc superconductivity, and colossal magnetoresistance. In particular, there is growing interest to understand and control the unique electronic properties of complex oxides for applications in transistor-like devices. This dissertation is focused on understanding the growth, characterization and application of La1/3Sr2/3FeO3 (LSFO) thin films, which are known to undergo an abrupt charge ordering phase transition at 190 K in bulk materials. This phase transition is accompanied by an order of magnitude increase in resistivity going from a conductive to insulating state as well as the spontaneous ordering of charge and antiferromagnetic spin structure along the [111] direction. Isocompositional cation-ordered superlattices of LSFO were synthesized via oxygen-assisted molecular beam epitaxy and explored through synchrotron X-ray diffraction, electronic transport, and density functional theory modeling. By adjusting the cation ordering of LaFeO3 (LFO), an antiferromagnetic insulator, and SrFeO3 (SFO), a conductor with a helical magnetic ground state, three isocompositional systems of LSFO were investigated. The superlattices were found to exhibit a charge ordering phase transition similar to LSFO for two of the three structures, as measured by an abrupt discontinuity in the temperature-dependent resistivity. Carrier behavior within the superlattices was also explored by fitting the temperature dependent resistivity to common conduction models. The conduction mechanism fits show that the transport at high temperatures is dominated by weakly insulating behavior due to small polaron conduction and at low temperatures the resistivity can be fit to both a novel power law and 3-dimensional variable range hopping. Additionally, reversible changes of the structural and electronic transport properties of La1/3Sr2/3FeO38́2Îþ/Gd-doped CeO2 (GDC) heterostructures arising from the manipulation of Îþ are presented. Thermally induced oxygen loss leads to a c-axis lattice expansion and an increase in resistivity in an LSFO film capped with GDC. In a three-terminal device where a gate bias is applied across the GDC layer to alter the LSFO oxygen stoichiometry, the ferrite channel is shown to undergo an order of magnitude change in resistance using gate voltages of less than 1 V applied at 500 K. The changes in resistance remain upon cooling to room temperature, in the absence of a gate bias, suggesting solid state ionic gating of perovskite oxides as a promising platform for applications in non-volatile, multistate devices. Along with the experiments of controlling Îþ in a device format, the kinetics of oxygen loss as a function of biaxial strain was investigated.