EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I

Download or read book Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when [omega]ce> [omega]pe[beta]b, where [omega]ce = e[beta]/mec is the electron gyrofrequency, [omega]pe is the electron plasma frequency, and [beta]b = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

Book Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Small Solenoidal Magnetic Field

Download or read book Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Small Solenoidal Magnetic Field written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self-electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytical model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytical studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when [omega]ce ≥ [omega]pe[beta]b, where [omega]ce = e[Beta]/mec is the electron gyrofrequency, [omega]pe is the electron plasma frequency, and [beta]b = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytical theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

Book Solenoidal Magnetic Field Influences the Beam Neutralization by a Background Plasma

Download or read book Solenoidal Magnetic Field Influences the Beam Neutralization by a Background Plasma written by and published by . This book was released on 2004 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when [omega]{sub ce}> [beta][omega]{sub pe}. Here, [omega]{sub ce} is the electron gyrofrequency, [omega]{sub pe} is the electron plasma frequency, and [beta] = V{sub b}/c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit [omega]{sub ce}” [beta][omega]{sub pe}, the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse.

Book Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

Download or read book Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma written by and published by . This book was released on 2009 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

Book Physics of Neutralization of Intense High Energy Ion Beam Pulses by Electrons

Download or read book Physics of Neutralization of Intense High Energy Ion Beam Pulses by Electrons written by and published by . This book was released on 2010 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

Book Issues in Nuclear  High Energy  Plasma  Particle  and Condensed Matter Physics  2011 Edition

Download or read book Issues in Nuclear High Energy Plasma Particle and Condensed Matter Physics 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 2502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics. The editors have built Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Book Fusion Energy Update

Download or read book Fusion Energy Update written by and published by . This book was released on 1985 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

Download or read book Dense Metal Plasma in a Solenoid for Ion Beam Neutralization written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

Book Plasma Physics and Controlled Nuclear Fusion Research  1994

Download or read book Plasma Physics and Controlled Nuclear Fusion Research 1994 written by International Atomic Energy Agency and published by . This book was released on 1995 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the Fifteenth International Conference held in Seville, 26 September to 1 October 1994. The conference was characterized by valuable scientific results on virtually all aspects of controlled fusion and fusion technology, laying a solid foundation for continued progress. The proceedings include all the technical papers, the pertinent discussions, and five conference summaries which are published as a separate volume.

Book A Seemingly Simple Task

Download or read book A Seemingly Simple Task written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

Book INIS Atomindex

Download or read book INIS Atomindex written by and published by . This book was released on 1988 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1967-08 with total page 1272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1990 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt: