EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Controllable Continuous wave Dual wavelength Operation of In band Diode pumped Nd GdVO4 Nd YVO4 Composite Laser

Download or read book Controllable Continuous wave Dual wavelength Operation of In band Diode pumped Nd GdVO4 Nd YVO4 Composite Laser written by Chinedu Onyenekwu and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a controllable continuous-wave dual-wavelength diode-pumped laser based on a composite Nd:GdVO4/Nd:YVO4 crystal. Controllability for the pair of spectral output was achieved by changing the operating temperature of the fiber-coupled laser diode pump using a digital temperature controller. The resulting temperature-dictated pumping wavelength provided a precise and turnkey means of intensity control for the two emitted spectral lines as either line showed strong and proportionate intensity change in response to the wavelength of excitation by the pump. The intensity ratio for the pair was in favor of the GdVO4 emission at 1063 nm while pumping at about 912 nm while the YVO4 emission was relatively lower and vice versa while pumping at 914 nm. For power scalability, a low-quantum defect (QD) approach was adopted using in-band pumping. This was specifically performed around the 910 - 914 nm wavelength range considering and corresponding to the longer Nd:GdVO4/Nd:YVO4 absorption bands. Using this efficiency-increasing initiative, the laser produced a maximum output power of 4.48 W with 11.55 W of absorbed power, corresponding to a slope and optical-to-optical efficiency of 43.8 % and 38.8 % respectively. These parameters are notably the highest ever reported compared to all previous works using a similar composite crystal for dual wavelength operation.

Book High Power Operation of the In band Diode pumped Nd GdVO4 Lasers

Download or read book High Power Operation of the In band Diode pumped Nd GdVO4 Lasers written by Mohammad Nadimi and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main obstacle in power scaling of the well-known Nd-doped lasers such as Nd:YVO4 is the thermal lensing effect. One of the proposed solutions to effectively alleviate this problem was based on the reduction of heating within the laser crystal. This was extensively investigated with the Nd:YVO4 crystal by pumping the laser at 914 nm instead of the standard pumping at 808 nm wavelength. In context of high power applications, the crystal of Nd:GdVO4 is an interesting alternative to the Nd:YVO4 as it offers the benefits of good spectral features (similar to Nd:YVO4) and much higher thermal conductivity. However, there is only one proof-of-principle work on continuous-wave (CW) Nd:GdVO4 laser using this pumping approach in which an output power of 3.35 W was reported. The full power scaling potential of the Nd:GdVO4 laser crystal to produce high output power has not been demonstrated to date. In this PhD thesis, I addressed this issue and investigated the high power operation of Nd:GdVO4 lasers under a new pumping wavelength of 912 nm. First, the thermal lensing behaviour of a 1063 nm Nd:GdVO4 was studied, both experimentally and by finite element analysis (FEA) method. The thermal lensing strength in Nd:GdVO4 laser under 912 nm pumping was significantly reduced when compared to the Nd:GdVO4 laser with 808 nm pumping or even Nd:YVO4 laser with 914 nm pumping. The next step of this research was focused on high power operation of Nd:GdVO4 lasers where we achieved 19.8 W of output power at 1063 nm. As a side work in the CW regime of operation, the possibility of discrete wavelength tuning and dual-wavelength operation of the Nd:GdVO4 laser were examined by using an intracavity birefringent filter. Discrete wavelength operation at four different wavelengths was demonstrated. Furthermore, for the first time we were able to demonstrate a dual-wavelength operation of the Nd:GdVO4 laser as a 1063 and 1071 nm wavelength pair. The last aspect of this PhD thesis was concentrated on generation of picosecond pulses. We were able to report on the first semiconductor saturable absorber mirror (SESAM) mode-locked (ML) Nd:GdVO4 laser with 912 nm pumping. The laser generated 10.14 W of average output power with the pulse width of 16 ps at the repetition rate of 85.2 MHz. To the best of our knowledge this is the highest average output power ever obtained from any of the SESAM mode-locked Nd-doped solid-state lasers that were pumped around 912 nm.

Book Highly Efficient Diode pumped Lasers Based on In band Pumping of Nd YVO4 Crystal

Download or read book Highly Efficient Diode pumped Lasers Based on In band Pumping of Nd YVO4 Crystal written by Tanant Waritanant and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work proposed to study Neodymium-doped laser crystals as an alternative for ultrashort pulse generation with medium output power level and high efficiency. The first section of this thesis focused on the thermal effect which is the main limitation in power scaling. The results showed that the thermal lensing effect is significantly reduced with in-band pumping at 914 nm. Aside from thermal lens effect investigation, discrete wavelength tuning and dual-wavelength operations were demonstrated with intracavity birefringent plates. Mode locking operations with SESAM as saturable absorber was demonstrated under 914 nm pump wavelength for the first time with the highest efficiency to date. The output in mode-locked regime was stable and self-starting with 16 ps pulse duration which can be extended to adjacent emission lines at 1073 nm and 1085 nm. Finally, two important candidates for low quantum defect pumping, Nd:CALYO and Nd:SYSO, were identified and tested for the first time.

Book Efficient CW Nd YLF Laser In band Diode pumped at 908 Nm and Its Thermal Lensing

Download or read book Efficient CW Nd YLF Laser In band Diode pumped at 908 Nm and Its Thermal Lensing written by Zohreh Sedaghati and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diode-pumped solid-state lasers are highly recommended for a variety of industrial and scientific applications as they can offer high efficiency and excellent beam quality. However, power scaling of these lasers is a challenging task. The main limitation in power scaling of famous neodymium doped lasers such as Nd:YVO4 is the thermal lensing effect. Thermal lensing degrades the output beam quality and in extreme cases can result in crystal fracture. One potential solution to this problem is to reduce the induced heat load inside the gain media by decreasing the quantum defect. This was demonstrated successfully for the Nd:YVO4 laser by pumping the laser at a long wavelength of 914 nm instead of the traditional pumping at 808 nm wavelength. Among the Nd-doped crystals operating in the near infrared range, the crystal of yttrium lithium fluoride (Nd:YLF) is another interesting gain medium as it has the benefits of natural birefringence (can generate naturally polarized laser beam), negative dn/dT (reduces thermal effects) and long upper level lifetime (in favor of Q-switched operation). In this work we used a long wavelength pumping approach and for the first time examined the performance of a continuous-wave Nd:YLF laser at 1047 nm under 908 nm diode pumping. This pumping wavelength reduced the quantum defect by 50% as compared to the conventional 808 nm pumping. The laser produced an output power of 850 mW at 1047 nm with excellent beam quality and 625 mW at 1053 nm. The slope efficiency was ~73.9% and 46% for 1047 and 1053 nm, respectively. Therefore, a considerable power scaling is possible for Nd:YLF crystals owing to the strongly reduced quantum defect and, hence, thermal lensing.

Book Diode pumped Continuous Wave Hybrid Nd phosphate Glass and Nd YVO4 Laser

Download or read book Diode pumped Continuous Wave Hybrid Nd phosphate Glass and Nd YVO4 Laser written by Sukanya Tachatraiphop and published by . This book was released on 1997 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling of Performance of Diode Pumped Nd

Download or read book Modeling of Performance of Diode Pumped Nd written by Ehsan Alimohammadian and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 888 nm pumping of Nd YVO4 for high power TEM00 lasers

Download or read book 888 nm pumping of Nd YVO4 for high power TEM00 lasers written by Louis McDonagh and published by Cuvillier Verlag. This book was released on 2011-02-28 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last decade, neodymium-doped orthovanadate has established itself as the active material of choice for commercial solid-state lasers emitting in the 1 µm range, with output powers from several hundred milliwatts to a few tens of watts, in continuous-wave, short nanosecond Q-switched, or picosecond modelocked pulsed regimes. Its main advantages over other Nd-doped hosts such as YAG are a large stimulated-emission cross section leading to a high gain, a strong pump absorption allowing the efficient mode-matching of tightly-focused pump light, and a natural birefringence resulting in a continuously polarized output. The main drawbacks, however, are rather poor mechanical characteristics and strong thermal lensing, effectively limiting the maximum applicable pump power before excessively strong and aberrated thermal lensing prevents an efficient operation in a diffraction-limited beam, and ultimately the crystal’s fracture. Put aside the power limitation, the association of vanadate with diode end pumping allows for the realization of highly efficient and reliable laser sources based on well-known technologies, which provides an advantage in terms of manufacturability and cost-effectiveness over other high-potential technologies such as disks and fibers. This thesis introduces a novel pumping technique for Nd:YVO4 that allows for the realization of significantly higher-power laser sources with a high optical-to-optical efficiency and diffraction-limited beam quality, while keeping the benefits of a well-established technology. It consists in pumping at a wavelength of 888 nm instead of the classic 808 nm, providing a low and isotropic absorption, which results in a smooth distribution of the absorbed pump light in long crystals, effectively limiting the deleterious effects of high inversion density such as crystal end-facet bulging, high crystal temperature, aberrated thermal lensing, and upconversion. After presenting vanadate’s spectroscopic and physical characteristics, a complete analysis of the heatgenerating effects is performed, allowing for side-by-side simulations of the thermal effects in practical 808 nm and 888 nm pumped systems, and for an evaluation of their respective thermal lensing behaviors. Continuous-wave operation was thoroughly investigated, first in a multi-transversal mode oscillator to assess the maximum optical efficiency with optimum pump-mode matching and the thermal lensing characteristics. A TEM00 resonator was then developed with a single crystal and one pump diode, providing 60 W of output power with an optical efficiency of 55% and a beam quality of M2 = 1.05. This resonator was symmetrically replicated to form a periodic resonator, providing 120 W of output with the same optical efficiency and beam quality. This two-crystal configuration was then modified to an oscillator-amplifier configuration, providing a single-pass extraction efficiency of 53% and a total oscillator-amplifier output of 117 W without any beam-quality degradation. Intracavity doubling of the one and two-crystal configurations was achieved by inserting a non-critically phase-matched LiB5O3 (LBO) non-linear crystal in the resonator, providing up to 62 W of diffraction-limited green light at 532 nm with low-noise characteristics thanks to a large number of oscillating modes, thus limiting the effects of the “green problem”. A strong industrial interest resides in Q-switched lasers emitting nanosecond pulses, particularly with a high average power, high pulse repetition rate, and pulse durations of a few to several tens of nanoseconds. Achieving high-frequency and short-pulse operation both require a high gain, which explains the domination of Nd:YVO4 over lower-gain materials such as Nd:YAG or Yb:YAG. Thus, an acousto-optically Q-switched oscillator was demonstrated with 50 W output power and 28 ns pulse duration at 50 kHz. Pulse duration, however, is inversely proportional to the pulse energy, so that an increase in repetition rate inevitably results in an almost linear increase in pulse width. A cavity-dumped Q-switched oscillator was built to circumvent this limitation, the pulse length being defined by the cavity roundtrip time and the electro-optic cell switching time. It provided a constant pulse duration of 6 ns up to a repetition rate of 100 kHz and a maximum output power of 47 W. Such short pulse durations are normally available with output powers of a few watts from Q-switched lasers, and conversely Q-switched lasers of similarly high output power deliver pulses of several tens to over 100 ns in duration. There exists another strong interest in high average power quasi-cw picosecond sources, which allow for the efficient generation of green and UV radiation, or even red-green-blue for laser video projection. Passive mode locking with a semiconductor saturable absorber mirror (SESAM) is the preferred technique employed for the stable and self-starting generation of picosecond pulse trains, yet a high gain is necessary for achieving high repetition rates while avoiding the Q-switched mode-locking regime. Thus SESAM mode locking was applied to an 888 nm pumped oscillator, achieving 57 W of output power at a repetition-rate of 110 MHz and a pulse duration of 33 ps. Its output was efficiently amplified in a single pass up to 111 W without any beam quality, temporal, or spectral degradation. The high peak power of 30 kW allowed for the generation of 87 W of second harmonic at 532 nm with an efficiency of 80%, and 35 W of 355 nm third harmonic with a conversion efficiency of 33% in LBO crystals. The wide range of high-power systems demonstrated in this work illustrate the benefits of the optimized pumping of Nd:YVO4 at 888 nm, maintaining its highly-desirable characteristics such as a high gain and a polarized output while extending its power capabilities far beyond regular 808 nm pumped systems. This improvement should allow Nd:YVO4 systems to compete with high-power technologies such as disks and fibers, which often struggle in the generation of short pulses because of their low gain and strong non-linear effects, respectively.

Book High Power Continuous Wave Nd KGW Laser with Low Quantum Defect Diode Pumping

Download or read book High Power Continuous Wave Nd KGW Laser with Low Quantum Defect Diode Pumping written by Rubel Chandra Talukder and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: High power diode-pumped solid state (DPSS) lasers are a rapidly growing technology that is attractive for various applications in scientific and industrial fields. DPSS lasers are highly efficient, reliable and durable with superior beam quality when compared to flash-lamp pumped solid state lasers. Double-tungstate crystal of neodymium-doped potassium gadolinium tungstate (Nd:KGW) is one of the most effective active media used in DPSS lasers for generation of continuous wave radiation and ultrashort (i.e. picosecond, 10-12 s) pulses. Unfortunately, the thermal conductivity of KGW host crystals is relatively low (~3 Wm-1K-1). This low thermal conductivity and large quantum defect while pumping with ~808 nm lead to significant thermo-optical distortions. One way to minimize thermo-optical distortions is to reduce the quantum defect. This can be done by pumping at longer wavelengths as compared to conventional 808 nm. In this work we demonstrate what we believe is the first continuous wave Nd:KGW laser with hot band diode pumping at ~910 nm. This pumping wavelength reduced the quantum defect by >46% as compared to the conventional ~808 nm pumping and resulted in significantly lower thermal lensing. The laser produced 2.9 W of average output power at 1067 nm in a diffraction limited beam for an absorbed pump power of 8.3 W. The slope efficiency and optical-to-optical efficiency were found to be 43% and 35%, respectively. Significant reduction of quantum defect offered by this pumping wavelength and availability of suitable high power laser diodes opens an attractive way to further power and efficiency scaling of the Nd:KGW lasers.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on with total page 2762 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Laser Diode

Download or read book Semiconductor Laser Diode written by Dnyaneshwar Patil and published by BoD – Books on Demand. This book was released on 2012-04-25 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a unique collection of the latest developments in the rapidly developing world of semiconductor laser diode technology and applications. An international group of distinguished contributors have covered particular aspects and the book includes optimization of semiconductor laser diode parameters for fascinating applications. This collection of chapters will be of considerable interest to engineers, scientists, technologists and physicists working in research and development in the field of semiconductor laser diode, as well as to young researchers who are at the beginning of their career.

Book High Power Diode Lasers

    Book Details:
  • Author : Roland Diehl
  • Publisher : Springer Science & Business Media
  • Release : 2003-07-01
  • ISBN : 3540478523
  • Pages : 420 pages

Download or read book High Power Diode Lasers written by Roland Diehl and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from the basics of semiconductor lasers with emphasis on the generation of high optical output power the reader is introduced in a tutorial way to all key technologies required to fabricate high-power diode-laser sources. Various applications are exemplified.

Book Passively Mode locked Picosecond Nd KGW Laser with Low Quantum Defect Diode Pumping

Download or read book Passively Mode locked Picosecond Nd KGW Laser with Low Quantum Defect Diode Pumping written by Md. Zubaer Eibna Halim and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid-state lasers are capable of providing versatile output characteristics with greater flexibility compared to other popular laser systems. Lasing action has been achieved in many hundreds of solid-state media, but Nd-ion doped gain media are widely used to reach high power levels with short pulses. In this work, commercially available Nd:KGW crystal served as a gain medium to achieve pulsed operation at 1067 nm. This laser crystal offers large stimulated emission crosssection and gain bandwidth which facilitates generation of high peak power pulses in the picosecond regime. The KGW crystal is monoclinic and biaxial in structure, and anisotropic in its optical and thermal properties. Due to poor thermal conductivity, this crystal can be operated within a limited power range before crystal fracture takes place. To reduce the amount of heat deposited in the gain media, we introduced a new pumping wavelength of 910 nm which reduces the quantum defect by more than 45%. Continuous-wave laser operation was optimized to operate in mode-locked regime. In order to achieve short light pulses from the continuous-wave laser, one of the end mirrors was replaced by a semiconductor saturable absorber mirror (SESAM) to generate 2.4 ps pulses at a repetition rate of 83.8 MHz. An average output power of 87 mW was obtained at lasing wavelength of 1067 nm and the beam was nearly diffraction limited with M^2 1.18. The peak power of the generated pulses was 427 W and energy of each pulse was 1 nJ. Pumping the crystal at longer wavelength (910 nm) reduced the thermal lensing of the crystal by half when compared to conventional pumping at shorter wavelength (808 nm). To the best of our knowledge, this is the first time passive mode-locking of a Nd:KGW laser was explored using the pump wavelength at 910 nm.

Book Epitaxial Design Optimizations for Increased Efficiency in GaAs Based High Power Diode Lasers

Download or read book Epitaxial Design Optimizations for Increased Efficiency in GaAs Based High Power Diode Lasers written by Thorben Kaul and published by Cuvillier Verlag. This book was released on 2021-04-09 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents progress in the root-cause analysis of power saturation mechanisms in continuous wave (CW) driven GaAs-based high-power broad area diode lasers operated at 935 nm. Target is to increase efficiency at high optical CW powers by epitaxial design. The novel extreme triple asymmetric (ETAS) design was developed and patented within this work to equip diode lasers that use an extremely thin p-waveguide with a high modal gain. An iterative variation of diode lasers employing ETAS designs was used to experimentally clarify the impact of modal gain on the temperature dependence of internal differential quantum efficiency (IDQE) and optical loss. High modal gain leads to increased free carrier absorption from the active region. However, less power saturation is observed, which must then be attributed to an improved temperature sensitivity of the IDQE. The effect of longitudinal spatial hole burning (LSHB) leads to above average non-linear carrier loss at the back facet of the device. At high CW currents the junction temperature rises. Therefore, not only the asymmetry of the carrier profile increases but also the average carrier density in order to compensate for the decreased material gain and increased threshold gain. This carrier non-pinning effect above threshold is found in this work to enhance the impact of LSHB already at low currents, leading to rapid degradation of IDQE with temperature. This finding puts LSHB into a new context for CW-driven devices as it emphasizes the importance of low carrier densities at threshold. The carrier density was effectively reduced by applying the novel ETAS design. This enabled diode lasers to be realized that show minimized degradation of IDQE with temperature and therefore improved performance in CW operation.

Book Fixed and Tunable Diode Lasers

Download or read book Fixed and Tunable Diode Lasers written by and published by Information Gatekeepers Inc. This book was released on with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Diode Pumped Solid State  DPSS  Lasers

Download or read book Diode Pumped Solid State DPSS Lasers written by Mark W. Dowley and published by . This book was released on 1998 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: