EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Control of Linear Systems with Large Time Delays in the Control

Download or read book Control of Linear Systems with Large Time Delays in the Control written by Ronald E. Foerster and published by . This book was released on 1979 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Control of Linear Systems with Large Time Delays in the Contol

Download or read book Control of Linear Systems with Large Time Delays in the Contol written by Ronald E. Foerster and published by . This book was released on 1970 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Linear Parameter Varying and Time Delay Systems

Download or read book Linear Parameter Varying and Time Delay Systems written by Corentin Briat and published by Springer. This book was released on 2014-09-03 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the analysis and control of Linear Parameter-Varying Systems and Time-Delay Systems and their interactions. The purpose is to give the readers some fundamental theoretical background on these topics and to give more insights on the possible applications of these theories. This self-contained monograph is written in an accessible way for readers ranging from undergraduate/PhD students to engineers and researchers willing to know more about the fields of time-delay systems, parameter-varying systems, robust analysis, robust control, gain-scheduling techniques in the LPV fashion and LMI based approaches. The only prerequisites are basic knowledge in linear algebra, ordinary differential equations and (linear) dynamical systems. Most of the results are proved unless the proof is too complex or not necessary for a good understanding of the results. In the latter cases, suitable references are systematically provided. The first part pertains on the representation, analysis and control of LPV systems along with a reminder on robust analysis and control techniques. The second part is concerned with the representation and analysis of time-delay systems using various time-domain techniques. The third and last part is devoted to the representation, analysis, observation, filtering and control of LPV time-delay systems. The book also presents many important basic and advanced results on the manipulation of LMIs.

Book Stability  Control  and Computation for Time Delay Systems

Download or read book Stability Control and Computation for Time Delay Systems written by Wim Michiels and published by SIAM. This book was released on 2014-12-11 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time delays are important components of many systems in, for instance, engineering, physics, economics, and the life sciences, because the transfer of material, energy, and information is usually not instantaneous. Time delays may appear as computation and communication lags, they model transport phenomena and heredity, and they arise as feedback delays in control loops. This monograph addresses the problem of stability analysis, stabilization, and robust fixed-order control of dynamical systems subject to delays, including both retarded- and neutral-type systems. Within the eigenvalue-based framework, an overall solution is given to the stability analysis, stabilization, and robust control design problem, using both analytical methods and numerical algorithms and applicable to a broad class of linear time-delay systems.? In this revised edition, the authors make the leap from stabilization to the design of robust and optimal controllers and from retarded-type to neutral-type delay systems, thus enlarging the scope of the book within control; include new, state-of-the-art material on numerical methods and algorithms to broaden the book?s focus and to reach additional research communities, in particular numerical linear algebra and numerical optimization; and increase the number and range of applications to better illustrate the effectiveness and generality of their approach.?

Book Nonlinear Control Under Nonconstant Delays

Download or read book Nonlinear Control Under Nonconstant Delays written by Nikolaos Bekiaris-Liberis and published by SIAM. This book was released on 2013-09-25 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors have developed a methodology for control of nonlinear systems in the presence of long delays, with large and rapid variation in the actuation or sensing path, or in the presence of long delays affecting the internal state of a system. In addition to control synthesis, they introduce tools to quantify the performance and the robustness properties of the designs provided in the book. The book is based on the concept of predictor feedback and infinite-dimensional backstepping transformation for linear systems and the authors guide the reader from the basic ideas of the concept?with constant delays only on the input?all the way through to nonlinear systems with state-dependent delays on the input as well as on system states. Readers will find the book useful because the authors provide elegant and systematic treatments of long-standing problems in delay systems, such as systems with state-dependent delays that arise in many applications. In addition, the authors give all control designs by explicit formulae, making the book especially useful for engineers who have faced delay-related challenges and are concerned with actual implementations and they accompany all control designs with Lyapunov-based analysis for establishing stability and performance guarantees.

Book Adaptive Control of Hyperbolic PDEs

Download or read book Adaptive Control of Hyperbolic PDEs written by Henrik Anfinsen and published by Springer. This book was released on 2019-02-21 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive Control of Linear Hyperbolic PDEs provides a comprehensive treatment of adaptive control of linear hyperbolic systems, using the backstepping method. It develops adaptive control strategies for different combinations of measurements and actuators, as well as for a range of different combinations of parameter uncertainty. The book treats boundary control of systems of hyperbolic partial differential equations (PDEs) with uncertain parameters. The authors develop designs for single equations, as well as any number of coupled equations. The designs are accompanied by mathematical proofs, which allow the reader to gain insight into the technical challenges associated with adaptive control of hyperbolic PDEs, and to get an overview of problems that are still open for further research. Although stabilization of unstable systems by boundary control and boundary sensing are the particular focus, state-feedback designs are also presented. The book also includes simulation examples with implementational details and graphical displays, to give readers an insight into the performance of the proposed control algorithms, as well as the computational details involved. A library of MATLAB® code supplies ready-to-use implementations of the control and estimation algorithms developed in the book, allowing readers to tailor controllers for cases of their particular interest with little effort. These implementations can be used for many different applications, including pipe flows, traffic flow, electrical power lines, and more. Adaptive Control of Linear Hyperbolic PDEs is of value to researchers and practitioners in applied mathematics, engineering and physics; it contains a rich set of adaptive control designs, including mathematical proofs and simulation demonstrations. The book is also of interest to students looking to expand their knowledge of hyperbolic PDEs.

Book Truncated Predictor Based Feedback Designs for Linear Systems with Input Delay

Download or read book Truncated Predictor Based Feedback Designs for Linear Systems with Input Delay written by Yusheng Wei and published by Springer Nature. This book was released on 2020-10-31 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first of its kind to present innovative research results on truncated predictor feedback (TPF) designs for general linear systems with input delay. Beginning with a brief review of time delay systems, the first half of the book focuses on TPF with a constant feedback parameter. Both state feedback and output feedback are considered. It is established that TPF achieves stabilization in the presence of an arbitrarily large bounded delay if the open loop system is not exponentially unstable. Examples are presented to illustrate that TPF may fail to stabilize an exponentially unstable system when the delay is sufficiently large. Bounds on the delay are then established under which stabilization can be achieved. The second half of the book explores variations of the TPF laws designed with a non-constant feedback parameter to accommodate unknown delays and improve closed-loop performance. The authors employ a step-by-step approach to presenting the ultimate result on a completely delay-independent feedback law. Truncated Predictor Based Feedback Designs for Linear Systems with Input Delay will appeal to control engineers, control theorists, and graduate students studying control systems. This volume will also be a valuable resource for engineers and applied mathematicians interested in dynamic systems with time delays.

Book Low Gain Feedback

Download or read book Low Gain Feedback written by Zongli Lin and published by Springer. This book was released on 1999 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a unified and unique presentation of low gain and high gain design methodologies. In particular the development of low gain feedback design methodology is discussed. The development of both low and high gain feedback enhances the industrial relevance of modern control theory, by providing solutions to a wide range of problems that are of paramount practical importance. This detailed monograph provides the reader with a comprehensive insight into these problems: research results are examined and solutions to the problems are considered. Compared to that of high gain feedback, the power and significance of low gain feedback is not as widely recognized. The purpose of this monograph is to present some recent developments in low gain feedback, and its applications. Several low gain techniques are examined, including the control of linear systems with saturating actuators, semi-global stabilization of minimum phase input-output linearizable systems and H2 suboptimal control.

Book Truncated Predictor Feedback for Time Delay Systems

Download or read book Truncated Predictor Feedback for Time Delay Systems written by Bin Zhou and published by Springer. This book was released on 2014-05-29 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated predictor feedback and predictor feedback The properties of the solutions to a class of parametric (differential and difference) Lyapunov matrix equations are presented in detail Detailed numerical examples and applications to the spacecraft rendezvous and formation flying problems are provided to demonstrate the usefulness of the presented theoretical results This book can be a useful resource for the researchers, engineers, and graduate students in the fields of control, applied mathematics, mechanical engineering, electrical engineering, and aerospace engineering.

Book Robust Control and Filtering for Time Delay Systems

Download or read book Robust Control and Filtering for Time Delay Systems written by Magdi S. Mahmoud and published by CRC Press. This book was released on 2018-10-08 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: A discussion of robust control and filtering for time-delay systems. It provides information on approaches to stability, stabilization, control design, and filtering aspects of electronic and computer systems - explicating the developments in time-delay systems and uncertain time-delay systems. There are appendices detailing important facets of matrix theory, standard lemmas and mathematical results, and applications of industry-tested software.

Book Controllability of Singularly Perturbed Linear Time Delay Systems

Download or read book Controllability of Singularly Perturbed Linear Time Delay Systems written by Valery Y. Glizer and published by Springer Nature. This book was released on 2021-03-24 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensive analysis of the control of singularly perturbed time delay systems. Expanding on the author’s previous work on controllability of linear systems with delays in the state and control variables, this volume’s comprehensive coverage makes it a valuable addition to the field. Each chapter is self-contained, allowing readers to study them independently or in succession. After a brief introduction, the book systematically examines properties of different classes of singularly perturbed time delay systems, including linear time-dependent systems with multiple point-wise and distributed state delays. The author then considers more general singularly perturbed systems with state and control delays. Euclidean space controllability for all of these systems is also discussed, using numerous examples from real-life models throughout the text to illustrate the results presented. More technically complicated proofs are presented in separate subsections. The final chapter includes a section dedicated to non-linear time delay systems. This book is ideal for researchers, engineers, and graduate students in systems science and control theory. Other applied mathematicians and researchers working in biology and medicine will also find this volume to be a valuable resource.

Book Optimal control of linear systems with time delay in the control

Download or read book Optimal control of linear systems with time delay in the control written by Shigeki Hatayama and published by . This book was released on 1978 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Time Delay Systems

Download or read book Introduction to Time Delay Systems written by Emilia Fridman and published by Springer. This book was released on 2014-09-02 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The beginning of the 21st century can be characterized as the” time-delay boom” leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course ”Introduction to time-delay systems” for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It should be of interest for researchers working in the field, for graduate students in engineering and applied mathematics, and for practicing engineers. It may also be used as a textbook for a graduate course on time-delay systems.

Book Delay Adaptive Linear Control

Download or read book Delay Adaptive Linear Control written by Yang Zhu and published by Princeton University Press. This book was released on 2020-04-28 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Actuator and sensor delays are among the most common dynamic phenomena in engineering practice, and when disregarded, they render controlled systems unstable. Over the past sixty years, predictor feedback has been a key tool for compensating such delays, but conventional predictor feedback algorithms assume that the delays and other parameters of a given system are known. When incorrect parameter values are used in the predictor, the resulting controller may be as destabilizing as without the delay compensation. Delay-Adaptive Linear Control develops adaptive predictor feedback algorithms equipped with online estimators of unknown delays and other parameters. Such estimators are designed as nonlinear differential equations, which dynamically adjust the parameters of the predictor. The design and analysis of the adaptive predictors involves a Lyapunov stability study of systems whose dimension is infinite, because of the delays, and nonlinear, because of the parameter estimators. This comprehensive book solves adaptive delay compensation problems for systems with single and multiple inputs/outputs, unknown and distinct delays in different input channels, unknown delay kernels, unknown plant parameters, unmeasurable finite-dimensional plant states, and unmeasurable infinite-dimensional actuator states. Presenting breakthroughs in adaptive control and control of delay systems, Delay-Adaptive Linear Control offers powerful new tools for the control engineer and the mathematician.

Book Delays and Networked Control Systems

Download or read book Delays and Networked Control Systems written by Alexandre Seuret and published by Springer. This book was released on 2016-06-07 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students.

Book Introduction to Linear Control Systems

Download or read book Introduction to Linear Control Systems written by Yazdan Bavafa-Toosi and published by Academic Press. This book was released on 2017-09-19 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.

Book Dynamic Systems with Time Delays  Stability and Control

Download or read book Dynamic Systems with Time Delays Stability and Control written by Ju H. Park and published by Springer Nature. This book was released on 2019-08-29 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.