Download or read book Continuum Mechanics using Mathematica written by Antonio Romano and published by Springer. This book was released on 2014-10-14 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity. This second edition expands the key topics and features to include: * Two new applications of fluid dynamics: meteorology and navigation * New exercises at the end of the existing chapters * The packages are rewritten for Mathematica 9 Continuum Mechanics using Mathematica®: Fundamentals, Applications and Scientific Computing is aimed at advanced undergraduates, graduate students and researchers in applied mathematics, mathematical physics and engineering. It may serve as a course textbook or self-study reference for anyone seeking a solid foundation in continuum mechanics.
Download or read book Continuum Mechanics written by Antonio Romano and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors’ previous book, Continuum Mechanics using Mathematica®, this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.
Download or read book Classical Mechanics with Mathematica written by Antonio Romano and published by Springer. This book was released on 2018-05-29 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.
Download or read book Elasticity with Mathematica written by Andrei Constantinescu and published by Cambridge University Press. This book was released on 2007-10-08 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for researchers, engineers and students in solid mechanics, materials science and physics who are interested in using the power of modern computing to solve a wide variety of problems of both practical and fundamental significance in elasticity. Extensive use of Mathematica in the book makes available to the reader a range of recipes that can be readily adjusted to match particular tastes or requirements, to visualize solutions, and to carry out symbolic and numerical analysis and optimization.
Download or read book Elements of Continuum Mechanics and Conservation Laws written by S.K. Godunov and published by Springer Science & Business Media. This book was released on 2003-05-31 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements of Continuum Mechanics and Conservation Laws presents a systematization of different models in mathematical physics, a study of the structure of conservation laws, thermodynamical identities, and connection with criteria for well-posedness of the corresponding mathematical problems. The theory presented in this book stems from research carried out by the authors concerning the formulations of differential equations describing explosive deformations of metals. In such processes, elasticity equations are used in some zones, whereas hydrodynamics equations are stated in other zones. Plastic deformations appear in transition zones, which leads to residual stresses. The suggested model contains some relaxation terms which simulate these plastic deformations. Certain laws of thermodynamics are used in order to describe and study differential equations simulating the physical processes. This leads to the special formulation of differential equations using generalized thermodynamical potentials.
Download or read book Micromechanics with Mathematica written by Seiichi Nomura and published by John Wiley & Sons. This book was released on 2016-05-02 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demonstrates the simplicity and effectiveness of Mathematica as the solution to practical problems in composite materials. Designed for those who need to learn how micromechanical approaches can help understand the behaviour of bodies with voids, inclusions, defects, this book is perfect for readers without a programming background. Thoroughly introducing the concept of micromechanics, it helps readers assess the deformation of solids at a localized level and analyse a body with microstructures. The author approaches this analysis using the computer algebra system Mathematica, which facilitates complex index manipulations and mathematical expressions accurately. The book begins by covering the general topics of continuum mechanics such as coordinate transformations, kinematics, stress, constitutive relationship and material symmetry. Mathematica programming is also introduced with accompanying examples. In the second half of the book, an analysis of heterogeneous materials with emphasis on composites is covered. Takes a practical approach by using Mathematica, one of the most popular programmes for symbolic computation Introduces the concept of micromechanics with worked-out examples using Mathematica code for ease of understanding Logically begins with the essentials of the topic, such as kinematics and stress, before moving to more advanced areas Applications covered include the basics of continuum mechanics, Eshelby's method, analytical and semi-analytical approaches for materials with inclusions (composites) in both infinite and finite matrix media and thermal stresses for a medium with inclusions, all with Mathematica examples Features a problem and solution section on the book’s companion website, useful for students new to the programme
Download or read book Elements of Continuum Mechanics and Thermodynamics written by Joanne L. Wegner and published by Cambridge University Press. This book was released on 2009-04-13 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is intended to provide a modern and integrated treatment of the foundations and applications of continuum mechanics. There is a significant increase in interest in continuum mechanics because of its relevance to microscale phenomena. In addition to being tailored for advanced undergraduate students and including numerous examples and exercises, this text also features a chapter on continuum thermodynamics, including entropy production in Newtonian viscous fluid flow and thermoelasticity. Computer solutions and examples are emphasized through the use of the symbolic mathematical computing program Mathematica®.
Download or read book Continuum Mechanics written by Franco M. Capaldi and published by Cambridge University Press. This book was released on 2012-06-18 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behaviour of continuous materials. This self-contained textbook is tailored for advanced undergraduate or first-year graduate students with numerous step-by-step derivations and worked-out examples. The author presents both the general continuum theory and the mathematics needed to apply it in practice. The derivation of constitutive models for ideal gases, fluids, solids and biological materials, and the numerical methods required to solve the resulting differential equations, are also detailed. Specifically, the text presents the theory and numerical implementation for the finite difference and the finite element methods in the Matlab® programming language. It includes thirteen detailed Matlab® programs illustrating how constitutive models are used in practice.
Download or read book Partial Differential Equations and Mathematica written by Prem K. Kythe and published by CRC Press. This book was released on 2018-10-03 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.
Download or read book Mechanics and Dynamical Systems with Mathematica written by Nicola Bellomo and published by Springer Science & Business Media. This book was released on 1999-12-28 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and Applied Mathematics Modeling the behavior of real physical systems by suitable evolution equa tions is a relevant, maybe the fundamental, aspect of the interactions be tween mathematics and applied sciences. Modeling is, however, only the first step toward the mathematical description and simulation of systems belonging to real world. Indeed, once the evolution equation is proposed, one has to deal with mathematical problems and develop suitable simula tions to provide the description of the real system according to the model. Within this framework, one has an evolution equation and the re lated mathematical problems obtained by adding all necessary conditions for their solution. Then, a qualitative analysis should be developed: this means proof of existence of solutions and analysis of their qualitative be havior. Asymptotic analysis may include a detailed description of stability properties. Quantitative analysis, based upon the application ofsuitable methods and algorithms for the solution of problems, ends up with the simulation that is the representation of the dependent variable versus the independent one. The information obtained by the model has to be compared with those deriving from the experimental observation of the real system. This comparison may finally lead to the validation of the model followed by its application and, maybe, further generalization.
Download or read book An Introduction to Continuum Mechanics written by J. N. Reddy and published by Cambridge University Press. This book was released on 2013-07-29 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.
Download or read book Experimental Mechanics of Solids written by Cesar A. Sciammarella and published by John Wiley & Sons. This book was released on 2012-03-26 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental solid mechanics is the study of materials to determine their physical properties. This study might include performing a stress analysis or measuring the extent of displacement, shape, strain and stress which a material suffers under controlled conditions. In the last few years there have been remarkable developments in experimental techniques that measure shape, displacement and strains and these sorts of experiments are increasingly conducted using computational techniques. Experimental Mechanics of Solids is a comprehensive introduction to the topics, technologies and methods of experimental mechanics of solids. It begins by establishing the fundamentals of continuum mechanics, explaining key areas such as the equations used, stresses and strains, and two and three dimensional problems. Having laid down the foundations of the topic, the book then moves on to look at specific techniques and technologies with emphasis on the most recent developments such as optics and image processing. Most of the current computational methods, as well as practical ones, are included to ensure that the book provides information essential to the reader in practical or research applications. Key features: Presents widely used and accepted methodologies that are based on research and development work of the lead author Systematically works through the topics and theories of experimental mechanics including detailed treatments of the Moire, Speckle and holographic optical methods Includes illustrations and diagrams to illuminate the topic clearly for the reader Provides a comprehensive introduction to the topic, and also acts as a quick reference guide This comprehensive book forms an invaluable resource for graduate students and is also a point of reference for researchers and practitioners in structural and materials engineering.
Download or read book Finite Element Concepts written by Gautam Dasgupta and published by Springer. This book was released on 2017-12-05 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews the energy concepts in structural mechanics with bar problems, which is continued in the next chapter for truss analysis using Mathematica programs. The Courant and Clough triangular elements for scalar potentials and linear elasticity are covered in chapters three and four, followed by four-node elements. Chapters five and six describe Taig’s isoparametric interpolants and Iron’s patch test. Rayleigh vector modes, which satisfy point-wise equilibrium, are elaborated on in chapter seven along with successful patch tests in the physical (x,y) Cartesian frame. Chapter eight explains point-wise incompressibility and employs (Moore-Penrose) inversion of rectangular matrices. The final chapter analyzes patch-tests in all directions and introduces five-node elements for linear stresses. Curved boundaries and higher order stresses are addressed in closed algebraic form. Appendices give a short introduction to Mathematica, followed by truss analysis using symbolic codes that could be used in all FEM problems to assemble element matrices and solve for all unknowns. All Mathematica codes for theoretical formulations and graphics are included with extensive numerical examples.
Download or read book Solid Mechanics in Engineering written by Raymond Parnes and published by . This book was released on 2001-11-28 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic, modern introduction to solid mechanics that is carefully motivated by realistic Engineering applications. Based on 25 years of teaching experience, Raymond Parnes uses a wealth of examples and a rich set of problems to build the reader's understanding of the scientific principles, without requiring 'higher mathematics'. Highlights of the book include The use of modern SI units throughout A thorough presentation of the subject stressing basic unifying concepts Comprehensive coverage, including topics such as the behaviour of materials on a phenomenological level Over 600 problems, many of which are designed for solving with MATLAB, MAPLE or MATHEMATICA. Solid Mechanics in Engineering is designed for 2-semester courses in Solid Mechanics or Strength of Materials taken by students in Mechanical, Civil or Aeronautical Engineering and Materials Science and may also be used for a first-year graduate program.
Download or read book Mathematica for Theoretical Physics written by Gerd Baumann and published by Springer Science & Business Media. This book was released on 2006-01-16 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user’s purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning environment.
Download or read book Fracture Mechanics written by Surjya Kumar Maiti and published by Cambridge University Press. This book was released on 2015-10 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers detailed treatment on fundamental concepts of fracture mechanics. The text is useful for undergraduate students, graduate students and researchers.
Download or read book Nonlinear Waves in Elastic Media written by A.G. Kulikovskii and published by CRC Press. This book was released on 2021-07-01 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Waves in Elastic Media explores the theoretical results of one-dimensional nonlinear waves, including shock waves, in elastic media. It is the first book to provide an in-depth and comprehensive presentation of the nonlinear wave theory while taking anisotropy effects into account. The theory is completely worked out and draws on 15 years of research by the authors, one of whom also wrote the 1965 classic Magnetohydrodynamics. Nonlinear Waves in Elastic Media emphasizes the behavior of quasitransverse waves and analyzes arbitrary discontinuity disintegration problems, illustrating that the solution can be non-unique - a surprising result. The solution is shown to be especially interesting when anisotropy and nonlinearity effects interact, even in small-amplitude waves. In addition, the text contains an independent mathematical chapter describing general methods to study hyperbolic systems expressing the conservation laws. The theoretical results described in Nonlinear Waves in Elastic Media allow, for the first time, discovery and interpretation of many new peculiarities inherent to the general problem of discontinuous solutions and so provide a valuable resource for advanced students and researchers involved with continuum mechanics and partial differential equations.