Download or read book Computational and Ambient Intelligence written by Francisco Sandoval and published by Springer. This book was released on 2007-09-21 with total page 1192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Work-Conference on Artificial Neural Networks, IWANN 2007, held in San Sebastián, Spain in June 2007. Coverage includes theoretical concepts and neurocomputational formulations, evolutionary and genetic algorithms, data analysis, signal processing, robotics and planning motor control, as well as neural networks and other machine learning methods in cancer research.
Download or read book Encyclopedia of Artificial Intelligence written by Juan Ramon Rabunal and published by IGI Global. This book was released on 2009-01-01 with total page 1640 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a comprehensive and in-depth reference to the most recent developments in the field covering theoretical developments, techniques, technologies, among others"--Provided by publisher.
Download or read book Hybrid Advanced Techniques for Forecasting in Energy Sector written by Wei-Chiang Hong and published by MDPI. This book was released on 2018-10-19 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Hybrid Advanced Techniques for Forecasting in Energy Sector" that was published in Energies
Download or read book Development of New Models Using Machine Learning Methods Combined with Different Time Lags for Network Traffic Forecasting written by Derman Akgol and published by Dissertation.com. This book was released on 2017-06-25 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this thesis is to forecast the amount of network traffic in Transmission Control Protocol/Internet Protocol (TCP/IP) -based networks by using different time lags and various machine learning methods including Support Vector Machines (SVM), Multilayer Perceptron (MLP), Radial Basis Function (RBF) Neural Network, M5P (a decision tree with linear regression functions at the nodes), Random Forest (RF), Random Tree (RT), and Reduced Error Prunning Error (REPTree), and statistical regression methods including Multiple Linear Regression (MLR) and Holt-Winters and compare the performance of statistical and machine learning methods. Two different Internet Service Providers' (ISPs) traffic data have been utilized to build traffic forecasting models. The first 66% of the data sets has been utilized as training sets and the rest has been used as test sets. The performance of the forecasting models for the data sets has been assessed using Mean Absulote Percentage Error (MAPE). The results show that SVM and M5P based models usually perform better than the ones obtained by the other methods.
Download or read book Proceedings of the International Conference on Soft Computing for Problem Solving SocProS 2011 December 20 22 2011 written by Kusum Deep and published by Springer Science & Business Media. This book was released on 2012-04-15 with total page 1048 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective is to provide the latest developments in the area of soft computing. These are the cutting edge technologies that have immense application in various fields. All the papers will undergo the peer review process to maintain the quality of work.
Download or read book Applied Optimization and Swarm Intelligence written by Eneko Osaba and published by Springer Nature. This book was released on 2021-05-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gravitates on the prominent theories and recent developments of swarm intelligence methods, and their application in both synthetic and real-world optimization problems. The special interest will be placed in those algorithmic variants where biological processes observed in nature have underpinned the core operators underlying their search mechanisms. In other words, the book centers its attention on swarm intelligence and nature-inspired methods for efficient optimization and problem solving. The content of this book unleashes a great opportunity for researchers, lecturers and practitioners interested in swarm intelligence, optimization problems and artificial intelligence.
Download or read book Handbook of Neural Computation written by Pijush Samui and published by Academic Press. This book was released on 2017-07-18 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Download or read book Handbook of Swarm Intelligence written by Bijaya Ketan Panigrahi and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more. It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective intelligence, albeit swarm intelligence (SI) - a metaphor that inspires a myriad of computational problem-solving techniques. In computational intelligence, swarm-like algorithms have been successfully applied to solve many real-world problems in engineering and sciences. This handbook volume serves as a useful foundational as well as consolidatory state-of-art collection of articles in the field from various researchers around the globe. It has a rich collection of contributions pertaining to the theoretical and empirical study of single and multi-objective variants of swarm intelligence based algorithms like particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), honey bee social foraging algorithms, and harmony search (HS). With chapters describing various applications of SI techniques in real-world engineering problems, this handbook can be a valuable resource for researchers and practitioners, giving an in-depth flavor of what SI is capable of achieving.
Download or read book Functional Data Analysis with R and MATLAB written by James Ramsay and published by Springer Science & Business Media. This book was released on 2009-06-29 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Download or read book Spatial Modeling in GIS and R for Earth and Environmental Sciences written by Hamid Reza Pourghasemi and published by Elsevier. This book was released on 2019-01-18 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
Download or read book Statistical and Econometric Methods for Transportation Data Analysis written by Simon Washington and published by CRC Press. This book was released on 2020-01-30 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book's website (with databases and other support materials) can be accessed here. Praise for the Second Edition: The second edition introduces an especially broad set of statistical methods ... As a lecturer in both transportation and marketing research, I find this book an excellent textbook for advanced undergraduate, Master’s and Ph.D. students, covering topics from simple descriptive statistics to complex Bayesian models. ... It is one of the few books that cover an extensive set of statistical methods needed for data analysis in transportation. The book offers a wealth of examples from the transportation field. —The American Statistician Statistical and Econometric Methods for Transportation Data Analysis, Third Edition offers an expansion over the first and second editions in response to the recent methodological advancements in the fields of econometrics and statistics and to provide an increasing range of examples and corresponding data sets. It describes and illustrates some of the statistical and econometric tools commonly used in transportation data analysis. It provides a wide breadth of examples and case studies, covering applications in various aspects of transportation planning, engineering, safety, and economics. Ample analytical rigor is provided in each chapter so that fundamental concepts and principles are clear and numerous references are provided for those seeking additional technical details and applications. New to the Third Edition Updated references and improved examples throughout. New sections on random parameters linear regression and ordered probability models including the hierarchical ordered probit model. A new section on random parameters models with heterogeneity in the means and variances of parameter estimates. Multiple new sections on correlated random parameters and correlated grouped random parameters in probit, logit and hazard-based models. A new section discussing the practical aspects of random parameters model estimation. A new chapter on Latent Class Models. A new chapter on Bivariate and Multivariate Dependent Variable Models. Statistical and Econometric Methods for Transportation Data Analysis, Third Edition can serve as a textbook for advanced undergraduate, Masters, and Ph.D. students in transportation-related disciplines including engineering, economics, urban and regional planning, and sociology. The book also serves as a technical reference for researchers and practitioners wishing to examine and understand a broad range of statistical and econometric tools required to study transportation problems.
Download or read book Sales Forecasting Management written by John T. Mentzer and published by SAGE. This book was released on 2004-11-23 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating 25 years of sales forecasting management research with more than 400 companies, Sales Forecasting Management, Second Edition is the first text to truly integrate the theory and practice of sales forecasting management. This research includes the personal experiences of John T. Mentzer and Mark A. Moon in advising companies how to improve their sales forecasting management practices. Their program of research includes two major surveys of companies′ sales forecasting practices, a two-year, in-depth study of sales forecasting management practices of 20 major companies, and an ongoing study of how to apply the findings from the two-year study to conducting sales forecasting audits of additional companies. The book provides comprehensive coverage of the techniques and applications of sales forecasting analysis, combined with a managerial focus to give managers and users of the sales forecasting function a clear understanding of the forecasting needs of all business functions. New to This Edition: The author′s well-regarded Multicaster software system demo, previously available on cassette, has been updated and is now available for download from the authors′ Web site New insights on the critical area of qualitative forecasting are presented The results of additional surveys done since the publication of the first edition have been added The discussion of the four dimensions of forecasting management has been significantly enhanced Significant reorganization and updating has been done to strengthen and improve the material for the second edition. Sales Forecasting Management is an ideal text for graduate courses in sales forecasting management. Practitioners in marketing, sales, finance/accounting, production/purchasing, and logistics will also find this easy-to-understand volume essential.
Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.
Download or read book Persistence Theory From Quiver Representations to Data Analysis written by Steve Y. Oudot and published by American Mathematical Soc.. This book was released on 2017-05-17 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.
Download or read book Adaptation in Natural and Artificial Systems written by John H. Holland and published by MIT Press. This book was released on 1992-04-29 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements.
Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.
Download or read book Emerging Technologies for Smart Cities written by Prabin K. Bora and published by Springer Nature. This book was released on 2021-06-11 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the select proceedings of the International Conference on Emerging Global Trends in Engineering and Technology (EGTET 2020), held in Guwahati, India. The chapters in this book focus on the latest cleaner, greener, and efficient technologies being developed for the implementation of smart cities across the world. The broader topical sections include Smart Buildings, Infrastructures and Disaster Management; Smart Governance; Technologies for Smart Cities, and Wireless Connectivity for Smart Cities. This book will cater to students, researchers, industry professionals, and policy making bodies interested and involved in the planning and implementation of smart city projects.