EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM

Download or read book Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM written by Jacek Tejchman and published by Springer Science & Business Media. This book was released on 2012-07-28 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and four different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams under cyclic loading were also simulated using a coupled elasto-plastic-damage approach. Numerical simulations were performed at macro- and meso-level of concrete. A stochastic and deterministic size effect was carefully investigated. In the case of reinforced concrete specimens, FE calculations were carried out with bars, slender and short beams, columns, corbels and tanks. Tensile and shear failure mechanisms were studied. Numerical results were compared with results from corresponding own and known in the scientific literature laboratory and full-scale tests.

Book Computational Modelling of Concrete Structures

Download or read book Computational Modelling of Concrete Structures written by Günther Meschke and published by CRC Press. This book was released on 2018-01-31 with total page 2046 pages. Available in PDF, EPUB and Kindle. Book excerpt: The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. Computational Modelling of Concrete Structures reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. The contributions cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: Multi-scale cement and concrete research: experiments and modelling Aging concrete: from very early ages to decades-long durability Advances in material modelling of plain concrete Analysis of reinforced concrete structures Steel-concrete interaction, fibre-reinforced concrete, and masonry Dynamic behaviour: from seismic retrofit to impact simulation Computational Modelling of Concrete Structures is of special interest to academics and researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Book Computational Modelling of Concrete and Concrete Structures

Download or read book Computational Modelling of Concrete and Concrete Structures written by Günther Meschke and published by CRC Press. This book was released on 2022-05-22 with total page 1500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.

Book Understanding the Tensile Properties of Concrete

Download or read book Understanding the Tensile Properties of Concrete written by Jaap Weerheijm and published by Elsevier. This book was released on 2024-03-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The response of concrete under tensile loading is crucial for most applications because concrete is much weaker in tension than in compression. Understanding the response mechanisms of concrete under tensile conditions is therefore key to understanding and using concrete in structural applications. Understanding the Tensile Properties of Concrete Second Edition summarises key recent research in this important subject area. After an introduction to concrete, the book is divided into two parts: part one on static response and part two on dynamic response. Part one starts with a summary chapter on the most important parameters that affect the tensile response of concrete. Chapters show how multi scale modelling is used to relate concrete composition to tensile properties. Part two focuses on dynamic response and starts with an introduction to the different regimes of dynamic loading, ranging from the low frequency loading by wind or earthquakes up to the extreme dynamic conditions due to explosions and ballistic impacts. Following chapters review dynamic testing techniques and devices that deal with the various regimes of dynamic loading. Later chapters highlight the dynamic behaviour of concrete from different viewpoints, and the book ends with a chapter on practical examples of how detailed knowledge on tensile properties is used by engineers in structural applications. Drawing on the work of some of the leading experts in the field, the book is fully updated and will be a valuable reference for civil and structural engineers as well as those researching this important material. Presents recent research in the areas of understanding the response mechanisms of concrete under tensile conditions Provides a summary of the most important parameters that affect the tensile response of concrete and shows how multi scale modeling is used to relate concrete composition to tensile properties Highlights the dynamic behavior of concrete from different viewpoints and provides practical examples of how detailed knowledge on tensile properties is used by engineers in structural applications Presents recent advancements in tensile strength determination under static and dynamic loading conditions for concrete structures Covers HSFRC and FRHSC Presents new work on non-local models and damage modeling, the dynamic increase factor for tensile strength, fracture energy and anchors, and slop stabilization

Book Development and Application of Discontinuous Modelling for Rock Engineering

Download or read book Development and Application of Discontinuous Modelling for Rock Engineering written by Ming Lu and published by CRC Press. This book was released on 2021-07-29 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thirty papers published in this book represent the latest developments in Discontinuous Deformation Analysis (DDA). The Numerical Manifold Method (NMM) and other numerical methods and their applications are also covered, as are the theoretical contributions of 3D DDA, modelling and visualization of 3D joint systems, and high-order NMM. Applications of these advances include the stability of underground works, rock slopes and boreholes.

Book Fracture Mechanics of Concrete and Concrete Structures

Download or read book Fracture Mechanics of Concrete and Concrete Structures written by Alberto Carpinteri and published by CRC Press. This book was released on 2007-05-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volumes of Fracture Mechanics of Concrete and Concrete Structures comprise the Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Catania, Italy, 17-22 June 2007. Volume 1, New Trends in Fracture Mechanics of Concrete, is divided into four parts: (1) Theoretical and Numerical Methods in Fracture Mechanics of Concrete; (2) Experimental Methods in Fracture Mechanics of Concrete; (3) Constitutive Damage Modelling of Concrete; (4) Time Effects in the Damage and Fracture of Concrete. Over the last twenty years, many theoretical, numerical and experimental methods have evolved in the field of Fracture Mechanics of Concrete. These have led to practical applications in reinforced-concrete design, assessment, monitoring and retrofitting, as well as innovative high-performance and durable cementitious materials. Although Fracture Mechanics of Concrete is now mature as a framework for defining and solving a variety of engineering problems, there is still much work to be done in improving previous theoretical and numerical models, and for re-interpreting established phenomena. In particular, there are new developments in the treatment of scale effects; the implementation of 3D-discretisation; and the combination of continuous and discontinuous models. Other areas of rapid progress are the development of innovative testing techniques; the proposal of non-local and anisotropic constitutive laws; the formulation of lattice and multiscale models, and the development of coupled multifield theories. Volume 2, Design, Assessment and Retrofitting of RC Structures, also has four parts: (1) Theoretical and Experimental Investigation on the Mechanical Behaviour of RC Structures; (2) Practical Problems in RC Structural Applications; (3) Monitoring and Assessment of RC Structures ; (4) Maintenance and Retrofitting of RC Structures. Fracture Mechanics is used to interpret different problems: anchor fastening; plastic rotation capacity in RC beams; and minimum reinforcement and ductility. It is also relevant to questions of size effect; flexural-shear-crushing failure mode transition; cohesive crack modelling; and rebar corrosion. Traditional problems arising in RC structures are also reconsidered and reinterpreted: crack width evaluation; dynamic and impact loading; fire and thermal degradation; fatigue strength assessment; as well as punching and spalling. Monitoring and assessment issues in RC structures come under discussion, such as acoustic emission and ultra sound. Maintenance and retrofitting techniques are treated, including the increasing popular technique of fibre-reinforced polymer sheets used as wrapping around cracked structures, for example, to strengthen beams and columns. Volume 3, High-Performance Concrete, Brick-Masonry and Environmental Aspects, is divided into four parts: (1) High-Performance Concrete; (2) Fiber Reinforced Concrete; (3) Brick-Masonry and other Quasi-Brittle Materials; and (4) Environmental Issues. Concrete technology has developed at a fast pace during the last two decades and material performance has been significantly improved. High-performance concrete (HPC) is now a reality. Initially, attention focused on compressive strength and the enhanced concrete was named “high-strength concrete” (HSC). Later, however, other issues arose, such as workability and durability. There was an increasing demand for enhanced rheology (in terms of flowability and cohesion, i.e. no segregation effects) in the fresh state, and compactness in the hardened state. Researchers responded with the development of self-consolidating concrete (SCC). Since higher strength generally implies higher brittleness, fibre-reinforced concrete (FRC) has generated considerable interest for its enhanced toughness under both static and dynamic loading, as well as for its ability to control concrete cracking. Nowadays, there are many types of fibre on the market, with different material and geometric qualities. The remarkable toughness of FRC, due to its fracture energy, combined with advances of nonlinear fracture-mechanics in modelling the structural behaviour, means that the advantages of incorporating fibres can be fully exploited. Furthermore, by adopting optimized mix-designs (in terms of fibre content and type, and of pozzolanic or hydraulically-active adjuncts) the increasingly important requirements of durability can be met, even under the most severe environmental conditions (like chemical aggression, high and low temperatures, and fatigue). Recently, the field fracture mechanics has extended to other brittle or quasi-brittle materials, such as brick-masonry, glass, polymers and ice, and a more realistic evaluation of the safety level of structures has been obtained. These proceedings present a wealth of information, and will be useful to professional civil engineers, postgraduate students and researchers.

Book Modelling  Simulation and Software Concepts for Scientific Technological Problems

Download or read book Modelling Simulation and Software Concepts for Scientific Technological Problems written by Ernst Stephan and published by Springer Science & Business Media. This book was released on 2011-04-28 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book includes different contributions that cover interdisciplinary research in the areas of · Error controlled numerical methods, efficient algorithms and software development · Elastic and in elastic deformation processes · Models with multiscales and multi-physics “High Performance” adaptive numerical methods using finite elements (FEM) and boundary elements (BEM) are described as well as efficient solvers for linear systems and corresponding software components for non-linear, coupled field equations of various branches of mechanics, electromagnetics, and geosciences.

Book New Trends in Fracture Mechanics of Concrete

Download or read book New Trends in Fracture Mechanics of Concrete written by Alberto Carpinteri and published by CRC Press. This book was released on 2007-05-31 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Trends in Fracture Mechanics of Concrete contains Volume 1 of the Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-6, Catania, Italy, 17-22 June 2007). It is divided into four parts: (1) Theoretical and Numerical Methods in Fracture Mechanics of Concrete; (2) Experimental Methods in Fracture Mechanics of Concrete; (3) Constitutive Damage Modelling of Concrete; (4) Time Effects in the Damage and Fracture of Concrete. Over the last twenty years, many theoretical, numerical and experimental methods have evolved in the field of Fracture Mechanics of Concrete. These have led to practical applications in reinforced-concrete design, assessment, monitoring and retrofitting, as well as innovative high-performance and durable cementitious materials. Although Fracture Mechanics of Concrete is now mature as a framework for defining and solving a variety of engineering problems, there is still much work to be done in improving previous theoretical and numerical models, and for re-interpreting established phenomena. In particular, there are new developments in the treatment of scale effects; the implementation of 3D-discretisation; and the combination of continuous and discontinuous models. Other areas of rapid progress are the development of innovative testing techniques; the proposal of non-local and anisotropic constitutive laws; the formulation of lattice and multiscale models, and the development of coupled multifield theories. The other two volumes comprising the Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures are Design, Assessment and Retrofitting of RC Structures; and High-Performance Concrete, Brick-Masonry and Environmental Aspects. The set presents a wealth of information, and will be useful to professional civil engineers, postgraduate students and researchers.

Book Computational Modelling of Concrete Structures

Download or read book Computational Modelling of Concrete Structures written by Gunther Meschke and published by CRC Press. This book was released on 2020-11-26 with total page 949 pages. Available in PDF, EPUB and Kindle. Book excerpt: This conference proceedings brings together the work of researchers and practising engineers concerned with computational modelling of complex concrete, reinforced concrete and prestressed concrete structures in engineering practice. The subjects considered include computational mechanics of concrete and other cementitious materials, including masonry. Advanced discretisation methods and microstructural aspects within multi-field and multi-scale settings are discussed, as well as modelling formulations and constitutive modelling frameworks and novel experimental programmes. The conference also considered the need for reliable, high-quality analysis and design of concrete structures in regard to safety-critical structures, with a view to adopting these in codes of practice or recommendations. The book is of special interest to researchers in computational mechanics, and industry experts in complex nonlinear simulations of concrete structures.

Book Statistical Models for the Fracture of Disordered Media

Download or read book Statistical Models for the Fracture of Disordered Media written by H.J. Herrmann and published by Elsevier. This book was released on 2014-06-28 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the century the technological desire to master the fracture of metals, concrete or polymers has boosted research and has left behind an overwhelming amount of literature. In a field where it seems difficult to say anything simple and new, the editors and authors of this book have managed to do just that.The approach to fracture taken here was not conceived by mechanical engineers or material scientists. It is essentially the by-product of exciting developments that have occurred in the last ten to fifteen years within a branch of theoretical physics, called statistical physics. Concepts such as ``percolation'' and ``fractals'', as models for the properties of fracture are not often considered by engineers. A particular aim of this volume is to emphasize the fundamental role disorder plays in the breaking process.The main scope of the volume is pedagogical and is at the same time an overview of fracture mechanics for physicists and an introduction to new concepts of statistical physics for mechanics and engineers. To this end the first half of the book consists of introductory chapters and the second half contains the results that have emerged from this new approach.

Book Modelling of Cohesive Frictional Materials

Download or read book Modelling of Cohesive Frictional Materials written by P.A. Vermeer and published by CRC Press. This book was released on 2007-07-05 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This progressive volume of lectures, written by leading experts on current developments in the field, is a must-read for engineers in physics, mechanics and engineering applications alike. Focusing on both continuous and discontinuous modelling, this topical symposium raises the issue of cohesive-frictional materials and the importance of understan

Book Fracture Mechanics of Concrete

Download or read book Fracture Mechanics of Concrete written by Folker H. Wittmann and published by Elsevier Publishing Company. This book was released on 1983 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Methods for Fracture

Download or read book Computational Methods for Fracture written by Timon Rabczuk and published by MDPI. This book was released on 2019-10-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Book The Combined Finite Discrete Element Method

Download or read book The Combined Finite Discrete Element Method written by Antonio A. Munjiza and published by John Wiley & Sons. This book was released on 2004-04-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.

Book Extended Finite Element Method

Download or read book Extended Finite Element Method written by Amir R. Khoei and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Book Proceedings fib Symposium in Stuttgart

Download or read book Proceedings fib Symposium in Stuttgart written by FIB – International Federation for Structural Concrete and published by FIB - Féd. Int. du Béton. This book was released on 2008-09-01 with total page 1168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fracture Mechanics of Concrete

Download or read book Fracture Mechanics of Concrete written by Surendra P. Shah and published by John Wiley & Sons. This book was released on 1995-09-28 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: FRACTURE MECHANICS OF CONCRETE AND ROCK This book offers engineers a unique opportunity to learn, frominternationally recognized leaders in their field, about the latesttheoretical advances in fracture mechanics in concrete, reinforcedconcrete structures, and rock. At the same time, it functions as asuperb, graduate-level introduction to fracture mechanics conceptsand analytical techniques. Reviews, in depth, the basic theory behind fracture mechanics * Covers the application of fracture mechanics to compressionfailure, creep, fatigue, torsion, and other advanced topics * Extremely well researched, applies experimental evidence ofdamage to a wide range of design cases * Supplies all relevant formulas for stress intensity * Covers state-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Describes nonlinear fracture mechanics (NLFM) and the latestRILEM modeling techniques for testing nonlinear quasi-brittlematerials * And much more Over the past few years, researchers employing techniques borrowedfrom fracture mechanics have made many groundbreaking discoveriesconcerning the causes and effects of cracking, damage, andfractures of plain and reinforced concrete structures and rock.This, in turn, has resulted in the further development andrefinement of fracture mechanics concepts and tools. Yet, despitethe field's growth and the growing conviction that fracturemechanics is indispensable to an understanding of material andstructural failure, there continues to be a surprising shortage oftextbooks and professional references on the subject. Written by two of the foremost names in the field, FractureMechanics of Concrete fills that gap. The most comprehensive bookever written on the subject, it consolidates the latest theoreticalresearch from around the world in a single reference that can beused by students and professionals alike. Fracture Mechanics of Concrete is divided into two sections. In thefirst, the authors lay the necessary groundwork with an in-depthreview of fundamental principles. In the second section, theauthors vividly demonstrate how fracture mechanics has beensuccessfully applied to failures occurring in a wide array ofdesign cases. Key topics covered in these sections include: * State-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Nonlinear fracture mechanics (NLFM) and the latest RILEM modelingtechniques for testing nonlinear quasi-brittle materials * The use of R-Curves to describe cracking and fracture inquasi-brittle materials * The application of fracture mechanics to compression failure,creep, fatigue, torsion, and other advanced topics The most timely, comprehensive, and authoritative book on thesubject currently available, Fracture Mechanics of Concrete is botha complete instructional tool for academics and students instructural and geotechnical engineering courses, and anindispensable working resource for practicing engineers.