Download or read book Feature Extraction Construction and Selection written by Huan Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.
Download or read book Machine Learning and Data Mining written by Igor Kononenko and published by Horwood Publishing. This book was released on 2007-04-30 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. Written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining, this text is suitable foradvanced undergraduates, postgraduates and tutors in a wide area of computer science and technology, as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to libraries and bookshelves of the many companies who are using the principles of data mining to effectively deliver solid business and industry solutions.
Download or read book Advances in Data Mining Applications and Theoretical Aspects written by Petra Perner and published by Springer. This book was released on 2010-06-27 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the tenth event of the Industrial Conference on Data Mining ICDM held in Berlin (www.data-mining-forum.de). For this edition the Program Committee received 175 submissions. After the pe- review process, we accepted 49 high-quality papers for oral presentation that are included in this book. The topics range from theoretical aspects of data mining to app- cations of data mining such as on multimedia data, in marketing, finance and telec- munication, in medicine and agriculture, and in process control, industry and society. Extended versions of selected papers will appear in the international journal Trans- tions on Machine Learning and Data Mining (www.ibai-publishing.org/journal/mldm). Ten papers were selected for poster presentations and are published in the ICDM Poster Proceeding Volume by ibai-publishing (www.ibai-publishing.org). In conjunction with ICDM four workshops were held on special hot applicati- oriented topics in data mining: Data Mining in Marketing DMM, Data Mining in LifeScience DMLS, the Workshop on Case-Based Reasoning for Multimedia Data CBR-MD, and the Workshop on Data Mining in Agriculture DMA. The Workshop on Data Mining in Agriculture ran for the first time this year. All workshop papers will be published in the workshop proceedings by ibai-publishing (www.ibai-publishing.org). Selected papers of CBR-MD will be published in a special issue of the international journal Transactions on Case-Based Reasoning (www.ibai-publishing.org/journal/cbr).
Download or read book Organizational Data Mining written by Hamid R. Nemati and published by IGI Global. This book was released on 2004-01-01 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mountains of business data are piling up in organizations every day. These organizations collect data from multiple sources, both internal and external. These sources include legacy systems, customer relationship management and enterprise resource planning applications, online and e-commerce systems, government organizations and business suppliers and partners. A recent study from the University of California at Berkeley found the amount of data organizations collect and store in enterprise databases doubles every year, and slightly more than half of this data will consist of "reference information," which is the kind of information strategic business applications and decision support systems demand (Kestelyn, 2002). Terabyte-sized (1,000 megabytes) databases are commonplace in organizations today, and this enormous growth will make petabyte-sized databases (1,000 terabytes) a reality within the next few years (Whiting, 2002). By 2004 the Gartner Group estimates worldwide data volumes will be 30 times those of 1999, which translates into more data having been produced in the last 30 years than during the previous 5,000 (Wurman, 1989).
Download or read book Data Preparation for Data Mining written by Dorian Pyle and published by Morgan Kaufmann. This book was released on 1999-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.
Download or read book Data Mining with Rattle and R written by Graham Williams and published by Springer Science & Business Media. This book was released on 2011-08-04 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.
Download or read book Introduction to Data Mining and Its Applications written by S. Sumathi and published by Springer Science & Business Media. This book was released on 2006-09-26 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in data base systems and new data base applications and is also designed to give a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, AI, machine learning, NN, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization. This book is intended for a wide audience of readers who are not necessarily experts in data warehousing and data mining, but are interested in receiving a general introduction to these areas and their many practical applications. Since data mining technology has become a hot topic not only among academic students but also for decision makers, it provides valuable hidden business and scientific intelligence from a large amount of historical data. It is also written for technical managers and executives as well as for technologists interested in learning about data mining.
Download or read book Data Mining Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2012-11-30 with total page 2335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining continues to be an emerging interdisciplinary field that offers the ability to extract information from an existing data set and translate that knowledge for end-users into an understandable way. Data Mining: Concepts, Methodologies, Tools, and Applications is a comprehensive collection of research on the latest advancements and developments of data mining and how it fits into the current technological world.
Download or read book Machine Learning and Data Mining in Pattern Recognition written by Petra Perner and published by Springer. This book was released on 2003-06-26 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of machine learning and data mining in connection with pattern recognition enjoys growing popularity and attracts many researchers. Automatic pattern recognition systems have proven successful in many applications. The wide use of these systems depends on their ability to adapt to changing environmental conditions and to deal with new objects. This requires learning capabilities on the parts of these systems. The exceptional attraction of learning in pattern recognition lies in the specific data themselves and the different stages at which they get processed in a pattern recognition system. This results a specific branch within the field of machine learning. At the workshop, were presented machine learning approaches for image pre-processing, image segmentation, recognition and interpretation. Machine learning systems were shown on applications such as document analysis and medical image analysis. Many databases are developed that contain multimedia sources such as images, measurement protocols, and text documents. Such systems should be able to retrieve these sources by content. That requires specific retrieval and indexing strategies for images and signals. Higher quality database contents can be achieved if it were possible to mine these databases for their underlying information. Such mining techniques have to consider the specific characteristic of the image sources. The field of mining multimedia databases is just starting out. We hope that our workshop can attract many other researchers to this subject.
Download or read book Data Mining Foundations and Practice written by Tsau Young Lin and published by Springer. This book was released on 2008-08-17 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti?c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.
Download or read book Future Data and Security Engineering written by Tran Khanh Dang and published by Springer Nature. This book was released on 2019-11-22 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 6th International Conference on Future Data and Security Engineering, FDSE 2019, held in Nha Trang City, Vietnam, in November 2019. The 38 full papers and 14 short papers presented together with 2 papers of keynote speeches were carefully reviewed and selected from 159 submissions. The selected papers are organized into the following topical headings: Invited Keynotes, Advanced Studies in Machine Learning, Advances in Query Processing and Optimization, Big Data Analytics and Distributed Systems, Deep Learning and Applications, Cloud Data Management and Infrastructure, Security and Privacy Engineering, Authentication and Access Control, Blockchain and Cybersecurity, Emerging Data Management Systems and Applications, Short papers: Security and Data Engineering.
Download or read book Data Mining Foundations and Intelligent Paradigms written by Dawn E. Holmes and published by Springer Science & Business Media. This book was released on 2012-01-12 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 3: Medical, Health, Social, Biological and other Applications” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.
Download or read book E Health Care Information Systems written by Joseph Tan and published by John Wiley & Sons. This book was released on 2005-04-29 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: E-Health Care Information Systems is a comprehensive collection written by leading experts from a range of disciplines including medicine, health sciences, engineering, business information systems, general science, and computing technology. This easily followed text provides a theoretical framework with sound methodological approaches and is filled with numerous case examples. Topics include e-health records, e-public information systems, e-network and surveys, general and specific applications of e-health such as e-rehabilitation, e-medicine, e-homecare, e-diagnosis support systems, and e-health intelligence. E-Health Care Information Systems also covers strategies in e-health care technology management, e-security issues, and the impacts of e-technologies. In addition, this book reviews new and emerging technologies such as mobile health, virtual reality and nanotechnology, and harnessing the power of e-technologies for real-world applications.
Download or read book Rough Sets Fuzzy Sets Data Mining and Granular Computing written by Aijun An and published by Springer Science & Business Media. This book was released on 2007-04-27 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2007, held in Toronto, Canada in May 2007 in conjunction with the Second International Conference on Rough Sets and Knowledge Technology, RSKT 2007, both as part of the Joint Rough Set Symposium, JRS 2007.
Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Download or read book Milton Friedman written by Robert Cord and published by Oxford University Press. This book was released on 2016 with total page 887 pages. Available in PDF, EPUB and Kindle. Book excerpt: Milton Friedman is regarded as one of the most influential economists of the twentieth century. This volume assesses the importance of the full range of Friedman's ideas, from his work on methodology in economics, and his consumption theory, his research on monetary economics, to his views on contentious social and political issues such as education, conscription, and drugs. It also presents personal recollections of Friedman by some of those who knew him, both asstudents and colleagues, and offers new evidence on Friedman's interactions with other noted economists. The volume provides readers with an up to date account of Friedman's continuing influence andwill help to stimulate further research across a variety of areas, including macroeconomics, the history of economic thought, and public policy. With contributions from a stellar cast, this book will be invaluable to academics and students alike.
Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics