Download or read book Measurement Error in Nonlinear Models written by Raymond J. Carroll and published by CRC Press. This book was released on 2006-06-21 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: It's been over a decade since the first edition of Measurement Error in Nonlinear Models splashed onto the scene, and research in the field has certainly not cooled in the interim. In fact, quite the opposite has occurred. As a result, Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition has been revamped and ex
Download or read book Symmetric Multivariate and Related Distributions written by Kai Wang Fang and published by CRC Press. This book was released on 2018-01-18 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.
Download or read book Statistical Adjustment of Data written by William Edwards Deming and published by . This book was released on 1964 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to basic concepts of statistics, curve fitting, least squares solution, conditions without parameter, conditions containing parameters. 26 exercises worked out.
Download or read book Errors in Variables Methods in System Identification written by Torsten Söderström and published by Springer. This book was released on 2018-04-07 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.
Download or read book The Econometrics of Panel Data written by László Mátyás and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this volume is to provide a general overview of the econometrics of panel data, both from a theoretical and from an applied viewpoint. Since the pioneering papers by Kuh (1959), Mundlak (1961), Hoch (1962), and Balestra and Nerlove (1966), the pooling of cross section and time series data has become an increasingly popular way of quantifying economic relationships. Each series provides information lacking in the other, so a combination of both leads to more accurate and reliable results than would be achievable by one type of series alone. Over the last 30 years much work has been done: investigation of the properties of the applied estimators and test statistics, analysis of dynamic models and the effects of eventual measurement errors, etc. These are just some of the problems addressed by this work. In addition, some specific diffi culties associated with the use of panel data, such as attrition, heterogeneity, selectivity bias, pseudo panels etc., have also been explored. The first objective of this book, which takes up Parts I and II, is to give as complete and up-to-date a presentation of these theoretical developments as possible. Part I is concerned with classical linear models and their extensions; Part II deals with nonlinear models and related issues: logit and probit models, latent variable models, incomplete panels and selectivity bias, and point processes.
Download or read book Handbook of Econometrics written by and published by Elsevier. This book was released on 2020-11-25 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Econometrics, Volume 7A, examines recent advances in foundational issues and "hot" topics within econometrics, such as inference for moment inequalities and estimation of high dimensional models. With its world-class editors and contributors, it succeeds in unifying leading studies of economic models, mathematical statistics and economic data. Our flourishing ability to address empirical problems in economics by using economic theory and statistical methods has driven the field of econometrics to unimaginable places. By designing methods of inference from data based on models of human choice behavior and social interactions, econometricians have created new subfields now sufficiently mature to require sophisticated literature summaries. - Presents a broader and more comprehensive view of this expanding field than any other handbook - Emphasizes the connection between econometrics and economics - Highlights current topics for which no good summaries exist
Download or read book Analysis of Panel Data written by Cheng Hsiao and published by Cambridge University Press. This book was released on 2003-02-13 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the basic econometric methods that have been used to analyze panel data - in other words, data collected by observing a number of individuals over time. Copyright © Libri GmbH. All rights reserved.
Download or read book Measurement Error and Latent Variables in Econometrics written by T. Wansbeek and published by North Holland. This book was released on 2000-12-08 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book first discusses in depth various aspects of the well-known inconsistency that arises when explanatory variables in a linear regression model are measured with error. Despite this inconsistency, the region where the true regression coeffecients lies can sometimes be characterized in a useful way, especially when bounds are known on the measurement error variance but also when such information is absent. Wage discrimination with imperfect productivity measurement is discussed as an important special case. Next, it is shown that the inconsistency is not accidental but fundamental. Due to an identification problem, no consistent estimators may exist at all. Additional information is desirable. This information can be of various types. One type is exact prior knowledge about functions of the parameters. This leads to the CALS estimator. Another major type is in the form of instrumental variables. Many aspects of this are discussed, including heteroskedasticity, combination of data from different sources, construction of instruments from the available data, and the LIML estimator, which is especially relevant when the instruments are weak. The scope is then widened to an embedding of the regression equation with measurement error in a multiple equations setting, leading to the exploratory factor analysis (EFA) model. This marks the step from measurement error to latent variables. Estimation of the EFA model leads to an eigenvalue problem. A variety of models is reviewed that involve eignevalue problems as their common characteristic. EFA is extended to confirmatory factor analysis (CFA) by including restrictions on the parameters of the factor analysis model, and next by relating the factors to background variables. These models are all structural equation models (SEMs), a very general and important class of models, with the LISREL model as its best-known representation, encompassing almost all linear equation systems with latent variables. Estimation of SEMs can be viewed as an application of the generalized method of moments (GMM). GMM in general and for SEM in particular is discussed at great length, including the generality of GMM, optimal weighting, conditional moments, continuous updating, simulation estimation, the link with the method of maximum likelihood, and in particular testing and model evaluation for GMM. The discussion concludes with nonlinear models. The emphasis is on polynomial models and models that are nonlinear due to a filter on the dependent variables, like discrete choice models or models with ordered categorical variables.
Download or read book Total Least Squares and Errors in Variables Modeling written by S. van Huffel and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.
Download or read book Advances in Economics and Econometrics Volume 3 Econometrics written by Daron Acemoglu and published by Cambridge University Press. This book was released on 2013-05-13 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third of three volumes containing edited versions of papers and commentaries presented at invited symposium sessions of the Tenth World Congress of the Econometric Society, held in Shanghai in August 2010. The papers summarize and interpret key developments in economics and econometrics, and they discuss future directions for a wide variety of topics, covering both theory and application. Written by the leading specialists in their fields, these volumes provide a unique, accessible survey of progress on the discipline. The first volume primarily addresses economic theory, with specific focuses on nonstandard markets, contracts, decision theory, communication and organizations, epistemics and calibration, and patents.
Download or read book Handbook of Econometrics written by J.J. Heckman and published by Elsevier. This book was released on 2001-11-22 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook is a definitive reference source and teaching aid for econometricians. It examines models, estimation theory, data analysis and field applications in econometrics. Comprehensive surveys, written by experts, discuss recent developments at a level suitable for professional use by economists, econometricians, statisticians, and in advanced graduate econometrics courses. For more information on the Handbooks in Economics series, please see our home page on http://www.elsevier.nl/locate/hes
Download or read book Microeconometrics written by A. Colin Cameron and published by Cambridge University Press. This book was released on 2005-05-09 with total page 1064 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is oriented to the practitioner.
Download or read book Journal of Econometrics written by and published by . This book was released on 2002 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Measurement Error Models written by Grace Y. Yi and published by CRC Press. This book was released on 2021-09-28 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measurement error arises ubiquitously in applications and has been of long-standing concern in a variety of fields, including medical research, epidemiological studies, economics, environmental studies, and survey research. While several research monographs are available to summarize methods and strategies of handling different measurement error problems, research in this area continues to attract extensive attention. The Handbook of Measurement Error Models provides overviews of various topics on measurement error problems. It collects carefully edited chapters concerning issues of measurement error and evolving statistical methods, with a good balance of methodology and applications. It is prepared for readers who wish to start research and gain insights into challenges, methods, and applications related to error-prone data. It also serves as a reference text on statistical methods and applications pertinent to measurement error models, for researchers and data analysts alike. Features: Provides an account of past development and modern advancement concerning measurement error problems Highlights the challenges induced by error-contaminated data Introduces off-the-shelf methods for mitigating deleterious impacts of measurement error Describes state-of-the-art strategies for conducting in-depth research
Download or read book Robust Methods and Asymptotic Theory in Nonlinear Econometrics written by H. J. Bierens and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate if the distributions of both the errors and the regressors have fat tails. This study also improves and extends the NL2SLSE theory of Amemiya. The method involved is a variant of the instrumental variables method, requiring at least as many instrumental variables as parameters to be estimated. The new MIE method requires less instrumental variables. Asymptotic normality can be derived by employing only one instrumental variable and consistency can even be proved with out using any instrumental variables at all.
Download or read book Measurement Error Models written by Wayne A. Fuller and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "The effort of Professor Fuller is commendable . . . [the book] provides a complete treatment of an important and frequently ignored topic. Those who work with measurement error models will find it valuable. It is the fundamental book on the subject, and statisticians will benefit from adding this book to their collection or to university or departmental libraries." -Biometrics "Given the large and diverse literature on measurement error/errors-in-variables problems, Fuller's book is most welcome. Anyone with an interest in the subject should certainly have this book." -Journal of the American Statistical Association "The author is to be commended for providing a complete presentation of a very important topic. Statisticians working with measurement error problems will benefit from adding this book to their collection." -Technometrics " . . . this book is a remarkable achievement and the product of impressive top-grade scholarly work." -Journal of Applied Econometrics Measurement Error Models offers coverage of estimation for situations where the model variables are observed subject to measurement error. Regression models are included with errors in the variables, latent variable models, and factor models. Results from several areas of application are discussed, including recent results for nonlinear models and for models with unequal variances. The estimation of true values for the fixed model, prediction of true values under the random model, model checks, and the analysis of residuals are addressed, and in addition, procedures are illustrated with data drawn from nearly twenty real data sets.
Download or read book Measurement Error in Nonlinear Models written by Sandra Nolte and published by LIT Verlag Münster. This book was released on 2010 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book analyzes how the choice of a particular disclosure limitation method, namely additive and multiplicative measurement error, affects the quality of the data and limits its usefulness for empirical research. Generally, a disclosure limitation method can be regarded as a data filter that transforms the true data generating process. This book focuses explicitly on the consequences of additive and multiplicative measurement error for the properties of nonlinear econometric estimators. It investigates the extent to which appropriate econometric techniques can yield consistent and unbiased estimates of the true data generating process in the case of disclosure limitation. Sandra Nolte received her PhD in Economics at the University of Konstanz, Germany in 2008 and is a postdoctoral researcher at the Financial Econometric Research Centre at the Warwick Business School, UK since 2009. Her research areas include microeconometrics and financial econometrics.