EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conformal Polymer Thin Films on Structurally Complex Surfaces by Initiated Chemical Vapor Deposition

Download or read book Conformal Polymer Thin Films on Structurally Complex Surfaces by Initiated Chemical Vapor Deposition written by Chia-Yun (Sharon) Hsieh and published by . This book was released on 2016 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Initiated chemical vapor deposition (iCVD) is a novel CVD technique for forming polymer thin films. Compared to traditional thermal and plasma CVD methods, iCVD operates at low substrate temperature and low power conditions. This has the benefit of enabling well-defined reaction pathways for polymerization that lead to stoichiometric polymers. The iCVD approach has been investigated for many polymer chemistries and the resulting iCVD polymers have been shown to possess analogous structures and properties as bulk polymers from liquid phase synthesis. Among iCVD reactions, free radical polymerization is the most common, where vinyl monomers can be polymerized with peroxide free radical initiators. Recently, cationic ring opening polymerization via iCVD was demonstrated by applying boron trifluoride diethyl etherate as a cationic initiator for the polymerization of ethylene oxide. This work will demonstrate for the first time the iCVD synthesis of polyglycidol (PGL) via cationic ring opening polymerization of glycidol. iCVD PGL shows similar structure and properties as liquid-synthesized PGL reported in literature based on spectroscopic analysis. Furthermore, the iCVD deposition behavior under different modes of iCVD polymerization environment - surface-driven, gas-driven, and supersaturation - will be discussed for forming polyglycidol (PGL), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(tetrafluoroethylene) (PTFE) and polyvinylpyrrolidone (PVP) coatings on structurally complex substrates, including nanopores, nanorods, and microstructures. Two major parameters Pm/Psat that represents the ratio of the partial pressure of the monomer to its saturation pressure, and Knudsen number (Kn) will be evaluated and related with the observed deposition behavior. Surface-driven iCVD of PGL and PHEMA have been found to conformally deposit in nanoporous TiO2 and microcatheters by carefully controlling Pm/Psat over a wide range of Kn. However, with gas-driven iCVD of PTFE, although conformal coatings have been achieved on micropillars and nanorods, coating within nanoporous networks at very large Kn was difficult even with careful control of Pm/Psat. It is believed that the PTFE polymerization is significantly driven by gas phase reactions that are not well controlled with a surface Pm/Psat parameter and, by moving to smaller and more confined features, the gas phase chemistries dominate and interfere with surface polymerization. By controlling Pm/Psat > 1, i.e. in a supersaturated monomer state, a recent iCVD processing discovery was made. Under supersaturation conditions, PVP was found to selectively grow on certain material surfaces and not others. This is believed to be due to differences in wettability of the monomer that dictates where the polymer grows, and enables directed patterning through iCVD. With the ability to deposit polymer coatings on different substrates, this work will illustrate a number of applications that highlight iCVD as an enabling technology. iCVD of PHEMA on ventricular catheters is found to be an effective coating for reducing undesired cell attachment in vitro by 77% after 17 days in cultured media compared to bare catheters, and so has the potential for improving catheter viability and reliability. iCVD of PTFE on silicon micropillars and nickel nanorod arrays is able to produce effective non-wetting (superhydrophobic) surface structures for enhancing latent heat transfer. iCVD of PGL in mesoporous TiO2 nanoparticle networks produces polymer nanocomposites with ultrahigh nanofiller loading (>80 wt%), offering a valuable platform for studying polymer nanocomposites with uniform and ultrahigh loading that exceed conventional processing limits (10-15 wt%) due to filler particle aggregation. As a result, the PGL glass transition temperature is found to increase significantly by 50-60 ℗ʻC compared to bulk PGL films without TiO2 nanofiller. The enhanced glass transition is attributed to appreciable hydrogen bonding interactions between PGL and TiO2.

Book Initiated Chemical Vapor Deposition  iCVD  Polymer Thin Films

Download or read book Initiated Chemical Vapor Deposition iCVD Polymer Thin Films written by Vijay Jain Bharamaiah Jeevendrakumar and published by . This book was released on 2015 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CVD Polymers

Download or read book CVD Polymers written by Karen K. Gleason and published by John Wiley & Sons. This book was released on 2015-04-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of CVD (chemical vapor deposition) is a versatile technique to fabricate high-quality thin films and structured surfaces in the nanometer regime from the vapor phase. Already widely used for the deposition of inorganic materials in the semiconductor industry, CVD has become the method of choice in many applications to process polymers as well. This highly scalable technique allows for synthesizing high-purity, defect-free films and for systematically tuning their chemical, mechanical and physical properties. In addition, vapor phase processing is critical for the deposition of insoluble materials including fluoropolymers, electrically conductive polymers, and highly crosslinked organic networks. Furthermore, CVD enables the coating of substrates which would otherwise dissolve or swell upon exposure to solvents. The scope of the book encompasses CVD polymerization processes which directly translate the chemical mechanisms of traditional polymer synthesis and organic synthesis in homogeneous liquids into heterogeneous processes for the modification of solid surfaces. The book is structured into four parts, complemented by an introductory overview of the diverse process strategies for CVD of polymeric materials. The first part on the fundamentals of CVD polymers is followed by a detailed coverage of the materials chemistry of CVD polymers, including the main synthesis mechanisms and the resultant classes of materials. The third part focuses on the applications of these materials such as membrane modification and device fabrication. The final part discusses the potential for scale-up and commercialization of CVD polymers.

Book Initiated Chemical Vapor Deposition of Polymer Thin Films and Coatings for Biological Applications

Download or read book Initiated Chemical Vapor Deposition of Polymer Thin Films and Coatings for Biological Applications written by Ranjita K. Bose and published by . This book was released on 2011 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advisor: Kenneth Lau.

Book Chemical Vapor Deposition Polymerization

Download or read book Chemical Vapor Deposition Polymerization written by Jeffrey B. Fortin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Vapor Deposition Polymerization - The Growth and Properties of Parylene Thin Films is intended to be valuable to both users and researchers of parylene thin films. It should be particularly useful for those setting up and characterizing their first research deposition system. It provides a good picture of the deposition process and equipment, as well as information on system-to-system variations that is important to consider when designing a deposition system or making modifications to an existing one. Also included are methods to characterizae a deposition system's pumping properties as well as monitor the deposition process via mass spectrometry. There are many references that will lead the reader to further information on the topic being discussed. This text should serve as a useful reference source and handbook for scientists and engineers interested in depositing high quality parylene thin films.

Book Functional Polymer Films  2 Volume Set

Download or read book Functional Polymer Films 2 Volume Set written by Wolfgang Knoll and published by John Wiley & Sons. This book was released on 2013-02-12 with total page 1107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very thin film materials have emerged as a highly interesting and useful quasi 2D-state functionality. They have given rise to numerous applications ranging from protective and smart coatings to electronics, sensors and display technology as well as serving biological, analytical and medical purposes. The tailoring of polymer film properties and functions has become a major research field. As opposed to the traditional treatise on polymer and resin-based coatings, this one-stop reference is the first to give readers a comprehensive view of the latest macromolecular and supramolecular film-based nanotechnology. Bringing together all the important facets and state-of-the-art research, the two well-structured volumes cover film assembly and depostion, functionality and patterning, and analysis and characterization. The result is an in-depth understanding of the phenomena, ordering, scale effects, fabrication, and analysis of polymer ultrathin films. This book will be a valuable addition for Materials Scientists, Polymer Chemists, Surface Scientists, Bioengineers, Coatings Specialists, Chemical Engineers, and Scientists working in this important research field and industry.

Book Enabling Integration of Vapor deposited Polymer Thin Films

Download or read book Enabling Integration of Vapor deposited Polymer Thin Films written by Christy Danielle Petruczok and published by . This book was released on 2014 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further enable the use of iCVD for industrial applications. The ability to pattern polymer thin films is a prerequisite for device fabrication. Two methods were developed for patterning iCVD polymers. The first technique facilitated patterning of nano- and microscale features of any iCVD thin film on planar surfaces. Retention of polymer functionality was demonstrated by incorporating the features into high-resolution resistive sensors. The second method adapted photolithographic techniques to achieve patterning on highly curved surfaces. Non-planar substrates were coated with a uniform layer of a functionalized, photoreactive iCVD polymer and exposed to ultraviolet light through a flexible mask. Exposed regions became insoluble in a developing solvent. The resolution and sensitivity of this iCVD-based negative photoresist were comparable to those of commercial products. Additionally, the patterned polymer was used as a mask for patterning metal on planar and curved surfaces. iCVD is typically a semi-continuous process. A batch process was investigated in order to minimize the use of expensive and corrosive reactants. The chemical functionality and conformality of the films were unaffected by the change in processing mode. Reaction yield was improved by one to two orders of magnitude for several film chemistries. iCVD is also unique in that it enables the deposition of cross-linked polymer films, which are difficult to create using conventional, solution-based methods. To potentially enhance durability, cross-linked poly(divinylbenzene) and poly(4-vinylpyridine-co-divinylbenzene) films were synthesized via iCVD. This is the first vapor-phase synthesis of the copolymer, which is a major component of many commercial ion exchange membranes. The degree of cross-linking was quantified using spectroscopic methods and was tightly controlled by adjusting the flow rate of divinylbenzene. Corresponding changes in the elastic moduli of the films were confirmed using nanoindentation. The first vapor-phase synthesis of poly(vinyl cinnamate) was also demonstrated. The cross-linking density of this polymer increases upon exposure to ultraviolet light and is readily quantifiable. Vinyl cinnamate was incorporated into a copolymer with N-isopropylacrylamide, yielding a temperature and light-responsive thin film.

Book Initiated Chemical Vapor Deposition of Polymeric Thin Films

Download or read book Initiated Chemical Vapor Deposition of Polymeric Thin Films written by Kelvin Chan (Ph. D.) and published by . This book was released on 2005 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) Growth rates and molecular weights, crucial parameters for polymeric thin films, were found to be highly dependent on the surface concentrations of monomers, leading to the conclusion that polymer formation occurs predominantly on the surface of the substrate. This conclusion also infers that controlling the surface concentrations of monomers can lead to copolymers/terpolymers with well-defined compositions, which was demonstrated in the iCVD of PHEMA-based thin films. iCVD therefore can be extended to complex polymer systems with multiple monomeric building blocks. Photo- initiatied chemical vapor deposition (piCVD) using a volatile photoinitiator is introduced for the first time in this thesis. piCVD possesses all the benefits of iCVD over conventional processes but uses a photochemical initiation mechanism that simplifies chamber design and potentially allows self-patterning during deposition.

Book Polymer Thin Films

    Book Details:
  • Author : Ophelia Kwan Chui Tsui
  • Publisher : World Scientific
  • Release : 2008
  • ISBN : 9812818820
  • Pages : 312 pages

Download or read book Polymer Thin Films written by Ophelia Kwan Chui Tsui and published by World Scientific. This book was released on 2008 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. Block copolymer thin films / J.-Y. Wang, S. Park and T. P. Russell -- ch. 2. Equilibration of block copolymer films on chemically patterned surfaces / G. S. W. Craig, H. Kang and P. F. Nealey -- ch. 3. Structure formation and evolution in confined cylinder-forming block copolymers / G. J. A. Sevink and J. G. E. M. Fraaije -- ch. 4. Block copolymer lithography for magnetic device fabrication / J. Y. Cheng and C. A. Ross -- ch. 5. Hierarchical structuring of polymer nanoparticles by self-organization / M. Shimomura ... [et al.] -- ch. 6. Wrinkling polymers for surface structure control and functionality / E. P. Chan and A. J. Crosby -- ch. 7. Crystallization in polymer thin films: morphology and growth / R. M. Van Horn and S. Z. D. Cheng -- ch. 8. Friction at soft polymer surface / M. K. Chaudhury, K. Vorvolakos and D. Malotky -- ch. 9. Relationship between molecular architecture, large-strain mechanical response and adhesive performance of model, block copolymer-based pressure sensitive adhesives / C. Creton and K. R. Shull -- ch. 10. Stability and dewetting of thin liquid films / K. Jacobs, R. Seemann and S. Herminghaus -- ch. 11. Anomalous dynamics of polymer Films / O. K. C. Tsui.

Book Environmentally Focused Patterning and Processing of Polymer Thin Films by Initiated Chemical Vapor Deposition  iCVD  and Oxidative Chemical Vapor Deposition  oCVD

Download or read book Environmentally Focused Patterning and Processing of Polymer Thin Films by Initiated Chemical Vapor Deposition iCVD and Oxidative Chemical Vapor Deposition oCVD written by Nathan Jeffrey Trujillo and published by . This book was released on 2010 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new millennium has brought fourth many technological innovations made possible by the advancement of high speed integrated circuits. The materials and energy requirements for a microchip is orders of magnitude higher than that of "traditional" goods, and current materials management requirements for EHS friendly low-k processing require a 10% annual increase in raw materials utilization. Initiated Chemical Vapor Deposition (iCVD) is a low-energy, one step, solvent-free process for producing polymeric thin films This thesis describes the deposition of a novel low-k iCVD precursor, 1,3,5,7-tetravinyltetramethylcylcotetrasiloxane (V4D4). The high degree of organic content in the as-deposited film affords the ability to tune the film's properties by annealing. The incorporation of atmospheric oxygen at high temperatures enhances the mechanical and electrical properties of the films. Films annealed at 410'C have a dielectric constant of 2.15, hardness and modulus of 0.78 GPa and 5.4 GPa, respectively. These values are comparatively better than previously reported results for CVD low-k films. Environmentally friendly low-k processing encompasses materials and energy management in the entire integration process, including lithography. Colloidal lithography was combined with iCVD and capillary force lithography to create spatially addressable grafted polymer pattern nanostructures, without the need for expensive lithography tools. Using this method, we pattern our novel low dielectric constant polymer down to 25 nm without the need for environmentally harmful solvents. Furthermore, these grafted patterns were produced for a broad material set of functional organic, fluorinated, and silicon containing polymers. A variation of this process created amine functionalized biocompatible conducting polymer nanostructure patterns for biosensor applications. These were fabricated using grafting reactions between oxidative chemical vapor deposition (oCVD) PEDOT conducting polymers and amine functionalized polystyrene (PS) colloidal templates. Carboxylate containing oCVD copolymer patterns were used to immobilized fluorescent dyes. Fluorescent colloidal particles were assembled within dyed PEDOT-co-TAA copolymer nanobowl templates to create bifunctional patterns for optical data storage applications. Finally, UV and e-beam lithography were used to pattern covalently tethered vinyl monolayers for resist-free patterning of iCVD and oCVD polymers, using environmentally innocuous solvents.

Book Functional and Responsive Surfaces Via Initiated Chemical Vapor Deposition  iCVD

Download or read book Functional and Responsive Surfaces Via Initiated Chemical Vapor Deposition iCVD written by Mahriah Elizabeth Alf and published by . This book was released on 2011 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stimuli-responsive polymers provide a method to control system behavior through the use of an external stimulus, such as temperature, pH, or electric fields among others. Temperature-responsive polymers, especially those based on N-isopropylacryalmide (NIPAAm), are of particular research interest due the ease of implementation of temperature changes to systems as well as the large accessible range of hydrophilic / hydrophobic switching. Initiated chemical vapor deposition (iCVD) is shown to be a useful technique for surface modification with NIPAAm-based polymers due to its ability to provide complete functional retention and applicability to "real world" substrates, which many times have varying compositions and / or micro- or nano-structured surfaces. The novel copolymer thin film of iCVD poly(NIPAAm-co-di(ethylene glycol) divinyl ether) (p(NIPAAm-co-DEGDVE)) is shown to exhibit a sharp lower critical solution temperature (LCST) transition, better-than or equivalent to other surface modification techniques, while also being able to achieve a wider range of thicknesses from the nano- to micro-scale, which is especially useful for flow control, actuator or sensor applications. The bottom-up film growth of iCVD allows for compositional gradients throughout the thickness of a polymer film. A novel NIPAAm-based copolymer with a NIPAAm-rich surface layer is developed which exhibits both fast swelling and deswelling kinetics. Quartz crystal microbalance with dissipation monitoring (QCM-D) is used to study the transition behavior of these films. These data provide valuable information relating to the polymer conformational changes throughout the transition region and help elucidate thermodynamic and mesh characteristics of the films. Finally, an application is developed which utilizes both iCVD and a complementary technique, oxidative CVD (oCVD), to create self-heating membranes with responsive permeability characteristics.

Book Die erste  ungeenderte  rechte  ware  augspurgische Confession  wir die auff dem Reichstag zu Augspurg Anno 1530 Carlo V ubergeben     2  Confutatio oder Widerlegung  von den B  ptischen wider dieselbige ubergeben  etc     3  Die erste  rechte  ware

Download or read book Die erste ungeenderte rechte ware augspurgische Confession wir die auff dem Reichstag zu Augspurg Anno 1530 Carlo V ubergeben 2 Confutatio oder Widerlegung von den B ptischen wider dieselbige ubergeben etc 3 Die erste rechte ware written by and published by . This book was released on 1577 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Films by Chemical Vapour Deposition

Download or read book Thin Films by Chemical Vapour Deposition written by C. E. Moroșanu and published by . This book was released on 1990 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Surface Modification of Polymers

Download or read book Surface Modification of Polymers written by Jean Pinson and published by John Wiley & Sons. This book was released on 2020-02-18 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.

Book Initiated Chemical Vapor Deposition of Functional Polyacrylic Thin Films

Download or read book Initiated Chemical Vapor Deposition of Functional Polyacrylic Thin Films written by Yu Mao and published by . This book was released on 2005 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (

Book Functional Polymer Coatings

Download or read book Functional Polymer Coatings written by Limin Wu and published by John Wiley & Sons. This book was released on 2015-06-15 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on a variety of coatings, this book provides detailed discussion on preparation, novel techniques, recent developments, and design theories to present the advantages of each function and provide the tools for better product performance and properties. • Presents advantages and benefits of properties and applications of the novel coating types • Includes chapters on specific and novel coatings, like nanocomposite, surface wettability tunable, stimuli-responsive, anti-fouling, antibacterial, self-healing, and structural coloring • Provides detailed discussion on recent developments in the field as well as current and future perspectives • Acts as a guide for polymer and materials researchers in optimizing polymer coating properties and increasing product performance