Download or read book Conformal Maps of a Riemannian Surface into the Space of Quaternions written by Dr. Jörg Richter and published by . This book was released on 1997-09-01 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present work, a coordinate-free way is suggested to handle conformal maps of a Riemannian surface into a space of constant curvature of maximum dimension 4, modeled on the non-commutative field of quaternions. This setup for the target space and the idea to treat differential 2-forms on Riemannian surfaces as quadratic functions on the tangent space, are the starting points for the development of the theory of conformal maps and in particular of conformal immersions. As a first result, very nice conditions for the conformality of immersions into 3- and 4-dimensional space-forms are deduced and a simple way to write the second fundamental form is found. If the target space is euclidean 3-space, an alternative approach is proposed by fixing a spin structure on the Riemannian surface. The problem of finding a local immersion is then reduced to that of solving a linear Dirac equation with a potential whose square is the Willmore integrand. This allows to make statements about the structure of the moduli space of conformal immersions and to derive a very nice criterion for a conformal immersion to be constrained Willmore. As an application the Dirac equation with constant potential over spheres and tori is solved. This yields explicit immersion formulae out of which there were produced pictures, the Dirac-spheres and -tori. These immersions have the property that their Willmore integrand generates a metric of vanishing and constant curvature, respectively. As a next step an affine immersion theory is developped. This means, one starts with a given conformal immersion into euclidean 3-space and looks for new ones in the same conformal class. This is called a spin-transformation and it leads one to solve an affine Dirac equation. Also, it is shown how the coordinate-dependent generalized Weierstrass representation fits into the present framework. In particular, it is now natural to consider the class of conformal immersions that admit new conformal immersions having the same potential. It turns out, that all geometrically interesting immersions admit such an isopotential spin-transformation and that this property of an immersion is even a conformal invariant of the ambient space. It is shown that conformal isothermal immersions generate both via their dual and via Darboux transformations non-trivial families of new isopotential conformal immersions. Similarly to this, conformal (constrained) Willmore immersions produce non-trivial families of isopotential immersions of which subfamilies are (constrained) Willmore again having even the same Willmore integral. Another observation is, that the Euler-Lagrange equation for the Willmore problem is the integrability condition for a quaternionic 1-form, which generates a conformal minimal immersions into hyperbolic 4-space. Vice versa, any such immersion determines a conformal Willmore immersion. As a consequence, there is a one-to-one correspondence between conformal minimal immersions into Lorentzian space and those into hyperbolic space, which generalizes to any dimension. There is also induced an action on conformal minimal immersions into hyperbolic 4-space. Another fact is, that conformal constant mean curvature (cmc) immersions into some 3-dimensional space form unveil to be isothermal and constrained Willmore. The reverse statement is true at least for tori. Finally a very simple proof of a theorem by R.Bryant concerning Willmore spheres is given. In the last part, time-dependent conformal immersions are considered. Their deformation formulae are computed and it is investigated under what conditions the flow commutes with Moebius transformations. The modified Novikov-Veselov flow is written down in a conformal invariant way and explicit deformation formulae for the immersion function itself and all of its invariants are given. This flow commutes with Moebius transformations. Its definition is coupled with a delta-bar problem, for which a solution is presented under special conditions. These are fulfilled at least by cmc immersions and by surfaces of revolution and the general flow formulae reduce to very nice formulae in these cases.
Download or read book Conformal Geometry of Surfaces in S4 and Quaternions written by Francis E. Burstall and published by Springer. This book was released on 2004-10-19 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bäcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.
Download or read book Quaternions Spinors and Surfaces written by George Kamberov and published by American Mathematical Soc.. This book was released on 2002 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many classical problems in pure and applied mathematics remain unsolved or partially solved. This book studies some of these questions by presenting new and important results that should motivate future research. Strong bookstore candidate.
Download or read book Harmonic Maps and Differential Geometry written by Eric Loubeau and published by American Mathematical Soc.. This book was released on 2011 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a conference held in Cagliari, Italy, from September 7-10, 2009, to celebrate John C. Wood's 60th birthday. These papers reflect the many facets of the theory of harmonic maps and its links and connections with other topics in Differential and Riemannian Geometry. Two long reports, one on constant mean curvature surfaces by F. Pedit and the other on the construction of harmonic maps by J. C. Wood, open the proceedings. These are followed by a mix of surveys on Prof. Wood's area of expertise: Lagrangian surfaces, biharmonic maps, locally conformally Kahler manifolds and the DDVV conjecture, as well as several research papers on harmonic maps. Other research papers in the volume are devoted to Willmore surfaces, Goldstein-Pedrich flows, contact pairs, prescribed Ricci curvature, conformal fibrations, the Fadeev-Hopf model, the Compact Support Principle and the curvature of surfaces.
Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Constrained Willmore Surfaces written by Áurea Casinhas Quintino and published by Cambridge University Press. This book was released on 2021-06-10 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed computations and new results unavailable elsewhere in the literature make it also an appealing reference for experts.
Download or read book Physics Letters written by and published by . This book was released on 1998 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: General physics, atomic physics, molecular physics, and solid state physics.
Download or read book Solitons Geometry and Topology written by and published by . This book was released on 1999 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geometry And Topology Of Submanifolds Ix written by Leopold Verstraelen and published by World Scientific. This book was released on 1999-07-22 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents:Affine Bibliography 1998 (T Binder et al.)Contact Metric R-Harmonic Manifolds (K Arslan & C Murathan)Local Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metric (T Binder)Hypersurfaces in Space Forms with Some Constant Curvature Functions (F Brito et al.)Some Relations Between a Submanifold and Its Focal Set (S Carter & A West)On Manifolds of Pseudosymmetric Type (F Defever et al.)Hypersurfaces with Pseudosymmetric Weyl Tensor in Conformally Flat Manifolds (R Deszcz et al.)Least-Squares Geometrical Fitting and Minimising Functions on Submanifolds (F Dillen et al.)Cubic Forms Generated by Functions on Projectively Flat Spaces (J Leder)Distinguished Submanifolds of a Sasakian Manifold (I Mihai)On the Curvature of Left Invariant Locally Conformally Para-Kählerian Metrics (Z Olszak)Remarks on Affine Variations on the Ellipsoid (M Wiehe)Dirac's Equation, Schrödinger's Equation and the Geometry of Surfaces (T J Willmore)and other papers Readership: Researchers doing differential geometry and topology. Keywords:Proceedings;Geometry;Topology;Valenciennes (France);Lyon (France);Leuven (Belgium);Dedication
Download or read book From Geometry to Quantum Mechanics written by Yoshiaki Maeda and published by Springer Science & Business Media. This book was released on 2007-04-22 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Invited articles in differential geometry and mathematical physics in honor of Hideki Omori * Focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, Lie group theory, quantizations and noncommutative geometry, as well as applications of PDEs and variational methods to geometry * Will appeal to graduate students in mathematics and quantum mechanics; also a reference
Download or read book Willmore Energy and Willmore Conjecture written by Magdalena D. Toda and published by CRC Press. This book was released on 2017-10-30 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first monograph dedicated entirely to Willmore energy and Willmore surfaces as contemporary topics in differential geometry. While it focuses on Willmore energy and related conjectures, it also sits at the intersection between integrable systems, harmonic maps, Lie groups, calculus of variations, geometric analysis and applied differential geometry. Rather than reproducing published results, it presents new directions, developments and open problems. It addresses questions like: What is new in Willmore theory? Are there any new Willmore conjectures and open problems? What are the contemporary applications of Willmore surfaces? As well as mathematicians and physicists, this book is a useful tool for postdoctoral researchers and advanced graduate students working in this area.
Download or read book Harmonic Morphisms Between Riemannian Manifolds written by Paul Baird and published by Oxford University Press. This book was released on 2003 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an account in book form of the theory of harmonic morphisms between Riemannian manifolds.
Download or read book Introduction to M bius Differential Geometry written by Udo Hertrich-Jeromin and published by Cambridge University Press. This book was released on 2003-08-14 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere.
Download or read book Surveys in Geometry II written by Athanase Papadopoulos and published by Springer Nature. This book was released on with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Summer School on Differential Geometry written by A. M. d'Azevedo Breda and published by . This book was released on 1999 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quantum Field Theory III Gauge Theory written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2011-08-17 with total page 1141 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).
Download or read book Topological Geometrodynamics written by Matti Pitkanen and published by Luniver Press. This book was released on 2006 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological GeometroDynamics is a modification of general relativity inspired by the conceptual problems related to the definitions of inertial and gravitational energy in general relativity. Topological geometrodynamics can be also seen as a generalization of super string models. Physical space-times are seen as four-dimensional surfaces in certain eight-dimensional space. The choice of this space is fixed by symmetries of the standard model so that geometrization of known classical fields and elementary particle quantum numbers results. The notion of many-sheeted space-time allows re-interpretation of the structures of perceived world in terms of macroscopic space-time topology. The generalization of the number concept based on fusion of real numbers and p-adic number fields implies a further generalization of the space-time concept allowing to identify space-time correlates of cognition and intentionality. Quantum measurement theory extended to a quantum theory of consciousness becomes an organic part of theory. A highly non-trivial prediction is the existence of a fractal hierarchy of copies of standard model physics with dark matter identified in terms of macroscopic quantum phases characterized by dynamical and quantized Planck constant. The book is a comprehensive overview and analysis of topological geometrodynamics as a mathematical and physical theory.