EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conformal Groups in Geometry and Spin Structures

Download or read book Conformal Groups in Geometry and Spin Structures written by Pierre Anglès and published by Springer Science & Business Media. This book was released on 2007-11-29 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained overview of the role of conformal groups in geometry and mathematical physics. It features a careful development of the material, from the basics of Clifford algebras to more advanced topics. Each chapter covers a specific aspect of conformal groups and conformal spin geometry. All major concepts are introduced and followed by detailed descriptions and definitions, and a comprehensive bibliography and index round out the work. Rich in exercises that are accompanied by full proofs and many hints, the book will be ideal as a course text or self-study volume for senior undergraduates and graduate students.

Book Conformal Groups in Geometry and Spin Structures

Download or read book Conformal Groups in Geometry and Spin Structures written by Pierre Anglès and published by Birkhäuser. This book was released on 2008-11-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained overview of the role of conformal groups in geometry and mathematical physics. It features a careful development of the material, from the basics of Clifford algebras to more advanced topics. Each chapter covers a specific aspect of conformal groups and conformal spin geometry. All major concepts are introduced and followed by detailed descriptions and definitions, and a comprehensive bibliography and index round out the work. Rich in exercises that are accompanied by full proofs and many hints, the book will be ideal as a course text or self-study volume for senior undergraduates and graduate students.

Book Conformal Groups in Geometry and Spin Structures

Download or read book Conformal Groups in Geometry and Spin Structures written by Pierre Angles and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Clifford Algebras and Spinors

Download or read book An Introduction to Clifford Algebras and Spinors written by Jayme Vaz Jr. and published by Oxford University Press. This book was released on 2016-05-12 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.

Book Handbook of Pseudo Riemannian Geometry and Supersymmetry

Download or read book Handbook of Pseudo Riemannian Geometry and Supersymmetry written by Vicente Cortés and published by European Mathematical Society. This book was released on 2010 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.

Book Spin Geometry

    Book Details:
  • Author : H. Blaine Lawson
  • Publisher : Princeton University Press
  • Release : 2016-06-02
  • ISBN : 1400883911
  • Pages : 442 pages

Download or read book Spin Geometry written by H. Blaine Lawson and published by Princeton University Press. This book was released on 2016-06-02 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.

Book Differential Geometric Structures

Download or read book Differential Geometric Structures written by Walter A. Poor and published by Courier Corporation. This book was released on 2015-04-27 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

Book Transformation Groups in Differential Geometry

Download or read book Transformation Groups in Differential Geometry written by Shoshichi Kobayashi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.

Book Clifford Algebras and Spinor Structures

Download or read book Clifford Algebras and Spinor Structures written by Rafal Ablamowicz and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.

Book Hypercomplex Analysis and Applications

Download or read book Hypercomplex Analysis and Applications written by Irene Sabadini and published by Springer Science & Business Media. This book was released on 2010-12-20 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.

Book Invariant Algebras and Geometric Reasoning

Download or read book Invariant Algebras and Geometric Reasoning written by Hongbo Li and published by World Scientific. This book was released on 2008 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics OCo among them, GrassmannOCoCayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of GrassmannOCoCayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras OCo Cayley bracket algebra, conformal geometric algebra, and null bracket algebra OCo for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide. Sample Chapter(s). Chapter 1: Introduction (252 KB). Contents: Projective Space, Bracket Algebra and GrassmannOCoCayley Algebra; Projective Incidence Geometry with Cayley Bracket Algebra; Projective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley Algebra; Inner-product Bracket Algebra and Clifford Algebra; Geometric Algebra; Euclidean Geometry and Conformal GrassmannOCoCayley Algebra; Conformal Clifford Algebra and Classical Geometries. Readership: Graduate students in discrete and computational geometry, and computer mathematics; mathematicians and computer scientists.

Book Geometric Algebra Computing

    Book Details:
  • Author : Eduardo Bayro-Corrochano
  • Publisher : Springer Science & Business Media
  • Release : 2010-05-19
  • ISBN : 1849961085
  • Pages : 527 pages

Download or read book Geometric Algebra Computing written by Eduardo Bayro-Corrochano and published by Springer Science & Business Media. This book was released on 2010-05-19 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.

Book Geometric Algebra with Applications in Engineering

Download or read book Geometric Algebra with Applications in Engineering written by Christian Perwass and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.

Book Bridging Circuits and Fields

Download or read book Bridging Circuits and Fields written by Alexander I. Petroianu and published by CRC Press. This book was released on 2021-11-30 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy and power are fundamental concepts in electromagnetism and circuit theory, as well as in optics, signal processing, power engineering, electrical machines, and power electronics. However, in crossing the disciplinary borders, we encounter understanding difficulties due to (1) the many possible mathematical representations of the same physical objects, and (2) the many possible physical interpretations of the same mathematical entities. The monograph proposes a quantum and a relativistic approach to electromagnetic power theory that is based on recent advances in physics and mathematics. The book takes a fresh look at old debates related to the significance of the Poynting theorem and the interpretation of reactive power. Reformulated in the mathematical language of geometric algebra, the new expression of electromagnetic power reflects the laws of conservation of energy-momentum in fields and circuits. The monograph offers a mathematically consistent and a physically coherent interpretation of the power concept and of the mechanism of power transmission at the subatomic (mesoscopic) level. The monograph proves (paraphrasing Heaviside) that there is no finality in the development of a vibrant discipline: power theory.

Book Topology  Geometry and Quantum Field Theory

Download or read book Topology Geometry and Quantum Field Theory written by Ulrike Luise Tillmann and published by Cambridge University Press. This book was released on 2004-06-28 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.

Book Scale Relativity And Fractal Space time  A New Approach To Unifying Relativity And Quantum Mechanics

Download or read book Scale Relativity And Fractal Space time A New Approach To Unifying Relativity And Quantum Mechanics written by Laurent Nottale and published by World Scientific. This book was released on 2011-06-17 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies and thus goes beyond the classical and quantum regimes taken separately. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.

Book A Mathematical Introduction to Conformal Field Theory

Download or read book A Mathematical Introduction to Conformal Field Theory written by Martin Schottenloher and published by Springer Science & Business Media. This book was released on 2008-09-15 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part I gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced topics of conformal field theory such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface.