EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conformal Field Theories and Tensor Categories

Download or read book Conformal Field Theories and Tensor Categories written by Chengming Bai and published by Springer Science & Business Media. This book was released on 2013-10-30 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is a collection of seven papers that are either based on the talks presented at the workshop "Conformal field theories and tensor categories" held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

Book Lectures on Tensor Categories and Modular Functors

Download or read book Lectures on Tensor Categories and Modular Functors written by Bojko Bakalov and published by American Mathematical Soc.. This book was released on 2001 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.

Book Tensor Categories

    Book Details:
  • Author : Pavel Etingof
  • Publisher : American Mathematical Soc.
  • Release : 2016-08-05
  • ISBN : 1470434415
  • Pages : 362 pages

Download or read book Tensor Categories written by Pavel Etingof and published by American Mathematical Soc.. This book was released on 2016-08-05 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

Book A Mathematical Introduction to Conformal Field Theory

Download or read book A Mathematical Introduction to Conformal Field Theory written by Martin Schottenloher and published by Springer Science & Business Media. This book was released on 2008-09-15 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part I gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced topics of conformal field theory such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface.

Book Two Dimensional Conformal Geometry and Vertex Operator Algebras

Download or read book Two Dimensional Conformal Geometry and Vertex Operator Algebras written by Yi-Zhi Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc- tures of conformal field theories. Much of the recent progress has deep connec- tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac- Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on.He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a big and important problem. On the one hand, the theory of vertex operator algebras and their repre- sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.

Book Topology  Geometry and Quantum Field Theory

Download or read book Topology Geometry and Quantum Field Theory written by Ulrike Luise Tillmann and published by Cambridge University Press. This book was released on 2004-06-28 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.

Book Renormalization and Effective Field Theory

Download or read book Renormalization and Effective Field Theory written by Kevin Costello and published by American Mathematical Soc.. This book was released on 2011 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin-Vilkovisky formalism.

Book Dualizable Tensor Categories

Download or read book Dualizable Tensor Categories written by Christopher L. Douglas and published by American Mathematical Soc.. This book was released on 2021-06-18 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: We investigate the relationship between the algebra of tensor categories and the topology of framed 3-manifolds. On the one hand, tensor categories with cer-tain algebraic properties determine topological invariants. We prove that fusion categories of nonzero global dimension are 3-dualizable, and therefore provide 3-dimensional 3-framed local field theories. We also show that all finite tensor cat-egories are 2-dualizable, and yield categorified 2-dimensional 3-framed local field theories. On the other hand, topological properties of 3-framed manifolds deter-mine algebraic equations among functors of tensor categories. We show that the 1-dimensional loop bordism, which exhibits a single full rotation, acts as the double dual autofunctor of a tensor category. We prove that the 2-dimensional belt-trick bordism, which unravels a double rotation, operates on any finite tensor category, and therefore supplies a trivialization of the quadruple dual. This approach pro-duces a quadruple-dual theorem for suitably dualizable objects in any symmetric monoidal 3-category. There is furthermore a correspondence between algebraic structures on tensor categories and homotopy fixed point structures, which in turn provide structured field theories; we describe the expected connection between piv-otal tensor categories and combed fixed point structures, and between spherical tensor categories and oriented fixed point structures.

Book Feynman Motives

    Book Details:
  • Author : Matilde Marcolli
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814271217
  • Pages : 234 pages

Download or read book Feynman Motives written by Matilde Marcolli and published by World Scientific. This book was released on 2010 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.

Book Lectures on Field Theory and Topology

Download or read book Lectures on Field Theory and Topology written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 2019-08-23 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Book String Net Construction of RCFT Correlators

Download or read book String Net Construction of RCFT Correlators written by Jürgen Fuchs and published by Springer Nature. This book was released on 2023-01-01 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies using string-net models to accomplish a direct, purely two-dimensional, approach to correlators of two-dimensional rational conformal field theories. The authors obtain concise geometric expressions for the objects describing bulk and boundary fields in terms of idempotents in the cylinder category of the underlying modular fusion category, comprising more general classes of fields than is standard in the literature. Combining these idempotents with Frobenius graphs on the world sheet yields string nets that form a consistent system of correlators, i.e. a system of invariants under appropriate mapping class groups that are compatible with factorization. The authors extract operator products of field objects from specific correlators; the resulting operator products are natural algebraic expressions that make sense beyond semisimplicity. They also derive an Eckmann-Hilton relation internal to a braided category, thereby demonstrating the utility of string nets for understanding algebra in braided tensor categories. Finally, they introduce the notion of a universal correlator. This systematizes the treatment of situations in which different world sheets have the same correlator and allows for the definition of a more comprehensive mapping class group.

Book Lie Algebras  Vertex Operator Algebras  and Related Topics

Download or read book Lie Algebras Vertex Operator Algebras and Related Topics written by Katrina Barron and published by American Mathematical Soc.. This book was released on 2017-08-15 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.

Book Affine  Vertex and W algebras

Download or read book Affine Vertex and W algebras written by Dražen Adamović and published by Springer Nature. This book was released on 2019-11-28 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on recent developments in the theory of vertex algebras, with particular emphasis on affine vertex algebras, affine W-algebras, and W-algebras appearing in physical theories such as logarithmic conformal field theory. It is widely accepted in the mathematical community that the best way to study the representation theory of affine Kac–Moody algebras is by investigating the representation theory of the associated affine vertex and W-algebras. In this volume, this general idea can be seen at work from several points of view. Most relevant state of the art topics are covered, including fusion, relationships with finite dimensional Lie theory, permutation orbifolds, higher Zhu algebras, connections with combinatorics, and mathematical physics. The volume is based on the INdAM Workshop Affine, Vertex and W-algebras, held in Rome from 11 to 15 December 2017. It will be of interest to all researchers in the field.

Book Vertex Operator Algebras  Number Theory and Related Topics

Download or read book Vertex Operator Algebras Number Theory and Related Topics written by Matthew Krauel and published by American Mathematical Soc.. This book was released on 2020-07-13 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Conference on Vertex Operator Algebras, Number Theory, and Related Topics, held from June 11–15, 2018, at California State University, Sacramento, California. The mathematics of vertex operator algebras, vector-valued modular forms and finite group theory continues to provide a rich and vibrant landscape in mathematics and physics. The resurgence of moonshine related to the Mathieu group and other groups, the increasing role of algebraic geometry and the development of irrational vertex operator algebras are just a few of the exciting and active areas at present. The proceedings center around active research on vertex operator algebras and vector-valued modular forms and offer original contributions to the areas of vertex algebras and number theory, surveys on some of the most important topics relevant to these fields, introductions to new fields related to these and open problems from some of the leaders in these areas.

Book Vertex Algebras and Geometry

Download or read book Vertex Algebras and Geometry written by Thomas Creutzig and published by American Mathematical Soc.. This book was released on 2018-07-20 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the AMS Special Session on Vertex Algebras and Geometry, held from October 8–9, 2016, and the mini-conference on Vertex Algebras, held from October 10–11, 2016, in Denver, Colorado. The papers cover vertex algebras in connection with geometry and tensor categories, with topics in vertex rings, chiral algebroids, the Higgs branch conjecture, and applicability and use of vertex tensor categories.

Book Noncommutative Geometry and Representation Theory in Mathematical Physics

Download or read book Noncommutative Geometry and Representation Theory in Mathematical Physics written by Jürgen Fuchs and published by American Mathematical Soc.. This book was released on 2005 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful cross-fertilization of the two communities. This volume contains the plenary talks fromthe international symposium on Noncommutative Geometry and Representation Theory in Mathematical Physics held at Karlstad University (Sweden) as a satellite conference to the Fourth European Congress of Mathematics. The scope of the volume is large and its content is relevant to various scientific communities interested in noncommutative geometry and representation theory. It offers a comprehensive view of the state of affairs for these two branches of mathematical physics. The book is suitablefor graduate students and researchers interested in mathematical physics.

Book From Fields To Strings  Circumnavigating Theoretical Physics  Ian Kogan Memorial Collection  In 3 Vols

Download or read book From Fields To Strings Circumnavigating Theoretical Physics Ian Kogan Memorial Collection In 3 Vols written by Shifman Misha and published by World Scientific. This book was released on 2005-02-03 with total page 2388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of dedicated reviews covering all aspects of theoretical high energy physics and some aspects of solid state physics. Some of the papers are broad reviews of topics that span the entire field while others are surveys of authors' personal achievements. This is the most comprehensive review collection reflecting state of the art at the end of 2004. An important and unique aspect is a special effort the authors have invested in making the presentation pedagogical.