EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conductor Insulator Quantum Phase Transitions

Download or read book Conductor Insulator Quantum Phase Transitions written by Vladimir Dobrosavljevic and published by Oxford University Press. This book was released on 2012-06 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.

Book Understanding Quantum Phase Transitions

Download or read book Understanding Quantum Phase Transitions written by Lincoln Carr and published by CRC Press. This book was released on 2010-11-02 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit

Book Electrodynamics of Quantum Critical Conductors and Superconductors

Download or read book Electrodynamics of Quantum Critical Conductors and Superconductors written by Uwe Santiago Pracht and published by Springer. This book was released on 2017-12-14 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents and discusses recent optical low-temperature experiments on disordered NbN, granular Al thin-films, and the heavy-fermion compound CeCoIn5, offering a unified picture of quantum-critical superconductivity. It provides a concise introduction to the respective theoretical models employed to interpret the experimental results, and guides readers through in-depth calculations supplemented with supportive figures in order to both retrace the interpretations and span the bridge between experiment and state-of-the art theory.

Book Handbook on the Physics and Chemistry of Rare Earths

Download or read book Handbook on the Physics and Chemistry of Rare Earths written by and published by Elsevier. This book was released on 2016-08-01 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and publishes two volumes a year. Presents up-to-date overviews of new developments in the field of rare earths, covering both their physics and chemistry Contains Individual chapters that are comprehensive and broad, with critical reviews Provides contributions from highly experienced, invited experts

Book The Mott Metal Insulator Transition

Download or read book The Mott Metal Insulator Transition written by Florian Gebhard and published by Springer. This book was released on 2003-07-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.

Book Strongly Correlated Electrons in Two Dimensions

Download or read book Strongly Correlated Electrons in Two Dimensions written by Sergey Kravchenko and published by CRC Press. This book was released on 2017-05-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.

Book Statistical Mechanics and Applications in Condensed Matter

Download or read book Statistical Mechanics and Applications in Condensed Matter written by Carlo Di Castro and published by Cambridge University Press. This book was released on 2015-08-27 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between thermodynamics and advanced topics in condensed matter, this textbook is an invaluable resource to all students of physics.

Book Magnetism in Topological Insulators

Download or read book Magnetism in Topological Insulators written by Vladimir Litvinov and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a brief introduction to topological insulator physics and device applications. Particular attention is paid to the indirect exchange interaction mediated by near surface Dirac fermions and the spin texture this interaction favors. Along with useful information on semiconductor material systems, the book provides a theoretical background for most common concepts of TI physics. Readers will benefit from up to date information and methods needed to start working in TI physics, theory, experiment and device applications. Discusses inter-spin interaction via massless and massive Dirac excitations;Includes coverage of near-surface spin texture of the magnetic atoms as related to their mutual positions as well to their positions with respect to top and bottom surfaces in thin TI film;Describes non-RKKY oscillating inter-spin interaction as a signature of the topological state;Explains the origin of the giant Rashba interaction at quantum phase transition in TI-conventional semiconductors.

Book Acta Physica Polonica

Download or read book Acta Physica Polonica written by and published by . This book was released on 2000 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topological Insulators and Topological Superconductors

Download or read book Topological Insulators and Topological Superconductors written by B. Andrei Bernevig and published by Princeton University Press. This book was released on 2013-04-07 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Book Memoirs of the Institute of Scientific and Industrial Research  Osaka University

Download or read book Memoirs of the Institute of Scientific and Industrial Research Osaka University written by Ōsaka Daigaku. Sangyō Kagaku Kenkyūjo and published by . This book was released on 2008 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Short Course on Topological Insulators

Download or read book A Short Course on Topological Insulators written by János K. Asbóth and published by Springer. This book was released on 2016-02-22 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

Book Recent Advances in Graphene Research

Download or read book Recent Advances in Graphene Research written by Pramoda Kumar Nayak and published by BoD – Books on Demand. This book was released on 2016-10-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book ''Recent Advances in Graphene Research'' provides a state-of-the-art report of the knowledge accumulated in graphene research. It contains 12 chapters divided into three sections. Section 1 ''Fundamentals of Graphene'' deals with quantum hall effect in graphene, electronic properties of carbon nanostructures and spectral statistics of graphene nanoflakes. In Section 2 ''Graphene Synthesis,'' the optimized synthesis procedures of graphene and its derivatives are presented. The application of graphene and its nanostructured-based materials for energy storage, conservation and other extensive applications are described in Section 3 ''Application of Graphene and its Nanostructures''. We believe that this book offers broader prospective to the readers in the recent advances in graphene research, starting from fundamental science to application.

Book Physics  Uspekhi

Download or read book Physics Uspekhi written by and published by . This book was released on 2005 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metal Insulator Transitions

Download or read book Metal Insulator Transitions written by Nevill Mott and published by CRC Press. This book was released on 2004-01-14 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a second edition of a classic book. Written by the late, great Sir Nevill Mott (Britain's last Nobel Prize winner for Physics), Metal Insulator Transitions has been greatly updated and expanded to further enhance its already enviable reputation.

Book Ruthenate and Rutheno Cuprate Materials

Download or read book Ruthenate and Rutheno Cuprate Materials written by C. Noce and published by . This book was released on 2014-01-15 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scale Invariance

    Book Details:
  • Author : Annick LESNE
  • Publisher : Springer Science & Business Media
  • Release : 2011-11-04
  • ISBN : 364215123X
  • Pages : 406 pages

Download or read book Scale Invariance written by Annick LESNE and published by Springer Science & Business Media. This book was released on 2011-11-04 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.