EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Speech   Language Processing

    Book Details:
  • Author : Dan Jurafsky
  • Publisher : Pearson Education India
  • Release : 2000-09
  • ISBN : 9788131716724
  • Pages : 912 pages

Download or read book Speech Language Processing written by Dan Jurafsky and published by Pearson Education India. This book was released on 2000-09 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Science for Healthcare

Download or read book Data Science for Healthcare written by Sergio Consoli and published by Springer. This book was released on 2019-02-23 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.

Book Neural Network Methods for Natural Language Processing

Download or read book Neural Network Methods for Natural Language Processing written by Yoav Goldberg and published by Springer Nature. This book was released on 2022-06-01 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Book Spoken Language Understanding

Download or read book Spoken Language Understanding written by Gokhan Tur and published by John Wiley & Sons. This book was released on 2011-05-03 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, using differing tasks and approaches to better understand and utilize such communications. This book covers the state-of-the-art approaches for the most popular SLU tasks with chapters written by well-known researchers in the respective fields. Key features include: Presents a fully integrated view of the two distinct disciplines of speech processing and language processing for SLU tasks. Defines what is possible today for SLU as an enabling technology for enterprise (e.g., customer care centers or company meetings), and consumer (e.g., entertainment, mobile, car, robot, or smart environments) applications and outlines the key research areas. Provides a unique source of distilled information on methods for computer modeling of semantic information in human/machine and human/human conversations. This book can be successfully used for graduate courses in electronics engineering, computer science or computational linguistics. Moreover, technologists interested in processing spoken communications will find it a useful source of collated information of the topic drawn from the two distinct disciplines of speech processing and language processing under the new area of SLU.

Book Automatic Speech Recognition

Download or read book Automatic Speech Recognition written by Dong Yu and published by Springer. This book was released on 2014-11-11 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.

Book Pattern Recognition in Speech and Language Processing

Download or read book Pattern Recognition in Speech and Language Processing written by Wu Chou and published by CRC Press. This book was released on 2003-02-26 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last 20 years, approaches to designing speech and language processing algorithms have moved from methods based on linguistics and speech science to data-driven pattern recognition techniques. These techniques have been the focus of intense, fast-moving research and have contributed to significant advances in this field. Pattern Reco

Book IEIS 2022

    Book Details:
  • Author : Menggang Li
  • Publisher : Springer Nature
  • Release : 2023-08-04
  • ISBN : 9819936187
  • Pages : 178 pages

Download or read book IEIS 2022 written by Menggang Li and published by Springer Nature. This book was released on 2023-08-04 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings book selects a great deal of research achievements in industrial restructuring strategy, industrial organization, industrial policy, departmental economic research, industrial competitiveness, regional industrial structure, national industrial economic security theory, and empirical research, and it emphasizes on combining theory with practice. With the economic globalization, there have been many new phenomena, new situations, and new challenges in the industries in many countries. The proceedings aim to discuss the problems in industrial economics and industrial security theories and practices. It is the documentation of the conference “9th International Conference on Industrial Economics System and Industrial Security Engineering”. Due to the impact of COVID-19, IEIS2022 took place online as a virtual conference.

Book Neural Networks for Natural Language Processing

Download or read book Neural Networks for Natural Language Processing written by S., Sumathi and published by IGI Global. This book was released on 2019-11-29 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information in today’s advancing world is rapidly expanding and becoming widely available. This eruption of data has made handling it a daunting and time-consuming task. Natural language processing (NLP) is a method that applies linguistics and algorithms to large amounts of this data to make it more valuable. NLP improves the interaction between humans and computers, yet there remains a lack of research that focuses on the practical implementations of this trending approach. Neural Networks for Natural Language Processing is a collection of innovative research on the methods and applications of linguistic information processing and its computational properties. This publication will support readers with performing sentence classification and language generation using neural networks, apply deep learning models to solve machine translation and conversation problems, and apply deep structured semantic models on information retrieval and natural language applications. While highlighting topics including deep learning, query entity recognition, and information retrieval, this book is ideally designed for research and development professionals, IT specialists, industrialists, technology developers, data analysts, data scientists, academics, researchers, and students seeking current research on the fundamental concepts and techniques of natural language processing.

Book Deep Learning Approach for Natural Language Processing  Speech  and Computer Vision

Download or read book Deep Learning Approach for Natural Language Processing Speech and Computer Vision written by L. Ashok Kumar and published by CRC Press. This book was released on 2023-05-22 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision provides an overview of general deep learning methodology and its applications of natural language processing (NLP), speech, and computer vision tasks. It simplifies and presents the concepts of deep learning in a comprehensive manner, with suitable, full-fledged examples of deep learning models, with an aim to bridge the gap between the theoretical and the applications using case studies with code, experiments, and supporting analysis. Features: Covers latest developments in deep learning techniques as applied to audio analysis, computer vision, and natural language processing. Introduces contemporary applications of deep learning techniques as applied to audio, textual, and visual processing. Discovers deep learning frameworks and libraries for NLP, speech, and computer vision in Python. Gives insights into using the tools and libraries in Python for real-world applications. Provides easily accessible tutorials and real-world case studies with code to provide hands-on experience. This book is aimed at researchers and graduate students in computer engineering, image, speech, and text processing.

Book Deep Learning for NLP and Speech Recognition

Download or read book Deep Learning for NLP and Speech Recognition written by Uday Kamath and published by Springer. This book was released on 2019-06-10 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.

Book Neural Machine Translation

Download or read book Neural Machine Translation written by Philipp Koehn and published by Cambridge University Press. This book was released on 2020-06-18 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to build machine translation systems with deep learning from the ground up, from basic concepts to cutting-edge research.

Book Bayesian Speech and Language Processing

Download or read book Bayesian Speech and Language Processing written by Shinji Watanabe and published by Cambridge University Press. This book was released on 2015-07-15 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and comprehensive guide on how to apply Bayesian machine learning techniques to solve speech and language processing problems.

Book Computational Linguistics and Intelligent Text Processing

Download or read book Computational Linguistics and Intelligent Text Processing written by Alexander Gelbukh and published by Springer. This book was released on 2018-03-20 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 9623 + 9624 constitutes revised selected papers from the CICLing 2016 conference which took place in Konya, Turkey, in April 2016. The total of 89 papers presented in the two volumes was carefully reviewed and selected from 298 submissions. The book also contains 4 invited papers and a memorial paper on Adam Kilgarriff’s Legacy to Computational Linguistics. The papers are organized in the following topical sections: Part I: In memoriam of Adam Kilgarriff; general formalisms; embeddings, language modeling, and sequence labeling; lexical resources and terminology extraction; morphology and part-of-speech tagging; syntax and chunking; named entity recognition; word sense disambiguation and anaphora resolution; semantics, discourse, and dialog. Part II: machine translation and multilingualism; sentiment analysis, opinion mining, subjectivity, and social media; text classification and categorization; information extraction; and applications.

Book Handbook of Pattern Recognition and Computer Vision  5th Edition

Download or read book Handbook of Pattern Recognition and Computer Vision 5th Edition written by Chi-hau Chen and published by World Scientific. This book was released on 2015-12-15 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures. Recognition applications include character recognition and document analysis, detection of digital mammograms, remote sensing image fusion, and analysis of functional magnetic resonance imaging data, etc.

Book The Speech Chain

    Book Details:
  • Author : Dr. Peter B. Denes
  • Publisher : Pickle Partners Publishing
  • Release : 2016-08-09
  • ISBN : 1787200779
  • Pages : 210 pages

Download or read book The Speech Chain written by Dr. Peter B. Denes and published by Pickle Partners Publishing. This book was released on 2016-08-09 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1963, The Speech Chain has been regarded as the classic, easy-to-read introduction to the fundamentals and complexities of speech communication. It provides a foundation for understanding the essential aspects of linguistics, acoustics and anatomy, and explores research and development into digital processing of speech and the use of computers for the generation of artificial speech and speech recognition. This interdisciplinary account will prove invaluable to students with little or no previous exposure to the study of language.

Book Machine Learning and Deep Learning in Natural Language Processing

Download or read book Machine Learning and Deep Learning in Natural Language Processing written by Anitha S. Pillai and published by CRC Press. This book was released on 2023-10-18 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Language Processing (NLP) is a sub-field of Artificial Intelligence, linguistics, and computer science and is concerned with the generation, recognition, and understanding of human languages, both written and spoken. NLP systems examine the grammatical structure of sentences as well as the specific meanings of words, and then they utilize algorithms to extract meaning and produce results. Machine Learning and Deep Learning in Natural Language Processing aims at providing a review of current Neural Network techniques in the NLP field, in particular about Conversational Agents (chatbots), Text-to-Speech, management of non-literal content – like emotions, but also satirical expressions – and applications in the healthcare field. NLP has the potential to be a disruptive technology in various healthcare fields, but so far little attention has been devoted to that goal. This book aims at providing some examples of NLP techniques that can, for example, restore speech, detect Parkinson’s disease, or help psychotherapists. This book is intended for a wide audience. Beginners will find useful chapters providing a general introduction to NLP techniques, while experienced professionals will appreciate the chapters about advanced management of emotion, empathy, and non-literal content.

Book Soft Computing for Data Analytics  Classification Model  and Control

Download or read book Soft Computing for Data Analytics Classification Model and Control written by Deepak Gupta and published by Springer Nature. This book was released on 2022-01-30 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a set of soft computing approaches and their application in data analytics, classification model, and control. The basics of fuzzy logic implementation for advanced hybrid fuzzy driven optimization methods has been covered in the book. The various soft computing techniques, including Fuzzy Logic, Rough Sets, Neutrosophic Sets, Type-2 Fuzzy logic, Neural Networks, Generative Adversarial Networks, and Evolutionary Computation have been discussed and they are used on variety of applications including data analytics, classification model, and control. The book is divided into two thematic parts. The first thematic section covers the various soft computing approaches for text classification and data analysis, while the second section focuses on the fuzzy driven optimization methods for the control systems. The chapters has been written and edited by active researchers, which cover hypotheses and practical considerations; provide insights into the design of hybrid algorithms for applications in data analytics, classification model, and engineering control.