EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conditional Moment Closure for Autoignition in Turbulent Flows

Download or read book Conditional Moment Closure for Autoignition in Turbulent Flows written by Giorgio De Paola and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Autoignition in Turbulent Two phase Flows

Download or read book Autoignition in Turbulent Two phase Flows written by Giulio Borghesi and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation deals with the numerical investigation of the physics of sprays autoigniting at diesel engine conditions using Direct Numerical Simulations (DNS), and with the modelling of droplet related effects within the Conditional Moment Closure (CMC) method for turbulent non-premixed combustion. The dissertation can be split in four different sections, with the content of each being summarized below. The first part of the dissertation introduces the equations that govern the temporal and spatial evolution of a turbulent reacting flow, and provides an extensive review of the CMC method for both single and two-phase flows. The problem of modelling droplet related effects in the CMC transport equations is discussed in detail, and physically-sound models for the unclosed terms that appear in these equations and that are affected by the droplet presence are derived. The second part of the dissertation deals with the application of the CMC method to the numerical simulation of several n-heptane sprays igniting at conditions relevant to diesel engine combustion. Droplet-related terms in the CMC equations were closed with the models developed in the first part of the dissertation. For all conditions investigated, CMC could correctly capture the ignition, propagation and anchoring phases of the spray flame. Inclusion of droplet terms in the CMC equations had little influence on the numerical predictions, in line with the findings of other authors. The third part of the dissertation presents a DNS study on the autoignition of n-heptane sprays at high pressure / low temperature conditions. The analysis revealed that spray ignition occurs first in well-mixed locations with a specific value of the mixture fraction. Changes in the operating conditions (initial turbulence intensity of the background gas, global equivalence ratio in the spray region, initial droplet size distribution) affected spray ignition through changes in the mixture formation process. For each spray, a characteristic ignition delay time and a characteristic droplet evaporation time could be defined. The ratio between these time scales was suggested as a key parameter for controlling the ignition delay of the spray. The last part of the dissertation exploits the DNS simulations to perform an a priori analysis of the applicability of the CMC method to autoigniting sprays. The study revealed that standard models for the mixing quantities used in CMC provide poor approximations in two-phase flows, and are partially responsible for the poor prediction of the ignition delay time. It was also observed that first-order closure of the chemical source terms performs poorly during the onset of ignition, suggesting that second-order closures may be more appropriate for studying spray autoignition problems. The contribution of the work presented in this dissertation is to provides a detailed insight into the physics of spray autoignition at diesel engine conditions, to propose and derive original methods for incorporating droplet evaporation effects within CMC in a physically-sound manner, and to assess the applicability and shortcomings of the CMC method to autoigniting sprays.

Book An Introduction to Turbulent Reacting Flows

Download or read book An Introduction to Turbulent Reacting Flows written by R. S. Cant and published by Imperial College Press. This book was released on 2008 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides physical intuition and key entries to the body of literature. This book includes historical perspective of the theories.

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Conditional Moment Closure Methods for Autoignition Problems

Download or read book Conditional Moment Closure Methods for Autoignition Problems written by William Kendal Bushe and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Investigation of an Inhomogeneous Mixing Model for Conditional Moment Closure Applied to Autoignition

Download or read book Investigation of an Inhomogeneous Mixing Model for Conditional Moment Closure Applied to Autoignition written by Adrian Milford and published by . This book was released on 2010 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autoignition of high pressure methane jets at engine relveant conditions within a shock tube is investigated using Conditional Moment Closure (CMC). The impact of two commonly used approximations applied in previous work is examined, the assumption of homogeneous turbulence in the closure of the micro-mixing term and the assumption of negligible radial variation of terms within the CMC equations. In the present work two formulations of an inhomogeneous mixing model are implemented, both utilizing the [beta] -PDF, but differing in the respective conditional velocity closure that is applied. The common linear model for conditional velocity is considered, in addition to the gradient diffusion model. The validity of cross-stream averaging the CMC equations is examined by comparing results from two-dimensional (axial and radial) solution of the CMC equations with cross-stream averaged results. The CMC equations are presented and all terms requiring closure are discussed. So- lution of the CMC equations is decoupled from the flow field solution using the frozen mixing assumption. Detailed chemical kinetics are implemented. The CMC equations are discretized using finite differences and solved using a fractional step method. To maintain consistency between the mixing model and the mixture fraction variance equation, the scalar dissipation rate from both implementations of the inhomogeneous model are scaled. The autoignition results for five air temperatures are compared with results obtained using homogeneous mixing models and experimental data. The gradient diffusion conditional velocity model is shown to produce diverging be- haviour in low probability regions. The corresponding profiles of conditional scalar dis- sipation rate are negatively impacted with the use of the gradient model, as unphysical behaviour at lean mixtures within the core of the fuel jet is observed. The predictions of ignition delay and location from the Inhomogeneous-Linear model are very close to the homogeneous mixing model results. The Inhomogeneous-Gradient model yields longer ignition delays and ignition locations further downstream. This is influenced by the higher scalar dissipation rates at lean mixtures resulting from the divergent behaviour of the gradient conditional velocity model. The ignition delays obtained by solving the CMC equations in two dimensions are in excellent agreement with the cross-stream averaged values, but the ignition locations are predicted closer to the injector.

Book Direct Numerical Simulation for Turbulent Reacting Flows

Download or read book Direct Numerical Simulation for Turbulent Reacting Flows written by Thierry Baritaud and published by Editions TECHNIP. This book was released on 1996 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays

Download or read book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays written by Bart Merci and published by Springer Science & Business Media. This book was released on 2014-03-27 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.

Book Combustion for Power Generation and Transportation

Download or read book Combustion for Power Generation and Transportation written by Avinash Kumar Agarwal and published by Springer. This book was released on 2017-01-20 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph presents both fundamental science and applied innovations on several key and emerging technologies involving fossil and alternate fuel utilization in power and transport sectors from renowned experts in the field. Some of the topics covered include: autoignition in laminar and turbulent nonpremixed flames; Langevin simulation of turbulent combustion; lean blowout (LBO) prediction through symbolic time series analysis; lasers and optical diagnostics for next generation IC engine development; exergy destruction study on small DI diesel engine; and gasoline direct injection. The book includes a chapter on carbon sequestration and optimization of enhanced oil and gas recovery. The contents of this book will be useful to researchers and professionals working on all aspects on combustion.

Book Turbulent Combustion

    Book Details:
  • Author : Norbert Peters
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 1139428063
  • Pages : 322 pages

Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Book High Performance Computing in Science and Engineering   17

Download or read book High Performance Computing in Science and Engineering 17 written by Wolfgang E. Nagel and published by Springer. This book was released on 2018-02-16 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

Book Annual Research Briefs   1999

    Book Details:
  • Author : Center for Turbulence Research (U.S.)
  • Publisher :
  • Release : 1999
  • ISBN :
  • Pages : 468 pages

Download or read book Annual Research Briefs 1999 written by Center for Turbulence Research (U.S.) and published by . This book was released on 1999 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theories of Turbulent Combustion in High Speed Flows

Download or read book Theories of Turbulent Combustion in High Speed Flows written by Paul A. Libby and published by . This book was released on 1995 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the ASME Fluids Engineering Division Summer Conference  2006

Download or read book Proceedings of the ASME Fluids Engineering Division Summer Conference 2006 written by American Society of Mechanical Engineers. Fluids Engineering Division and published by . This book was released on 2006 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: