Download or read book Concise Guide to Numerical Algorithmics written by John Lawrence Nazareth and published by Springer Nature. This book was released on 2023-01-02 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithmic Science and Engineering (NAS&E), or more compactly, Numerical Algorithmics, is the theoretical and empirical study and the practical implementation and application of algorithms for solving finite-dimensional problems of a numeric nature. The variables of such problems are either discrete-valued, or continuous over the reals, or, and as is often the case, a combination of the two, and they may or may not have an underlying network/graph structure. This re-emerging discipline of numerical algorithmics within computer science is the counterpart of the now well-established discipline of numerical analysis within mathematics, where the latter’s emphasis is on infinite-dimensional, continuous numerical problems and their finite-dimensional, continuous approximates. A discussion of the underlying rationale for numerical algorithmics, its foundational models of computation, its organizational details, and its role, in conjunction with numerical analysis, in support of the modern modus operandi of scientific computing, or computational science & engineering, is the primary focus of this short monograph. It comprises six chapters, each with its own bibliography. Chapters 2, 3 and 6 present the book’s primary content. Chapters 1, 4, and 5 are briefer, and they provide contextual material for the three primary chapters and smooth the transition between them. Mathematical formalism has been kept to a minimum, and, whenever possible, visual and verbal forms of presentation are employed and the discussion enlivened through the use of motivating quotations and illustrative examples. The reader is expected to have a working knowledge of the basics of computer science, an exposure to basic linear algebra and calculus (and perhaps some real analysis), and an understanding of elementary mathematical concepts such as convexity of sets and functions, networks and graphs, and so on. Although this book is not suitable for use as the principal textbook for a course on numerical algorithmics (NAS&E), it will be of value as a supplementary reference for a variety of courses. It can also serve as the primary text for a research seminar. And it can be recommended for self-study of the foundations and organization of NAS&E to graduate and advanced undergraduate students with sufficient mathematical maturity and a background in computing. When departments of computer science were first created within universities worldwide during the middle of the twentieth century, numerical analysis was an important part of the curriculum. Its role within the discipline of computer science has greatly diminished over time, if not vanished altogether, and specialists in that area are now to be found mainly within other fields, in particular, mathematics and the physical sciences. A central concern of this monograph is the regrettable, downward trajectory of numerical analysis within computer science and how it can be arrested and suitably reconstituted. Resorting to a biblical metaphor, numerical algorithmics (NAS&E) as envisioned herein is neither old wine in new bottles, nor new wine in old bottles, but rather this re-emerging discipline is a decantation of an age-old vintage that can hopefully find its proper place within the larger arena of computer science, and at what appears now to be an opportune time.
Download or read book Concise Guide to Quantum Computing written by Sergei Kurgalin and published by Springer Nature. This book was released on 2021-02-24 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended for practical, laboratory sessions associated with the course of quantum computing and quantum algorithms, as well as for self-study. It contains basic theoretical concepts and methods for solving basic types of problems and gives an overview of basic qubit operations, entangled states, quantum circuits, implementing functions, quantum Fourier transform, phase estimation, etc. The book serves as a basis for the application of new information technologies in education and corporate technical training: theoretical material and examples of practical problems, as well as exercises with, in most cases, detailed solutions, have relation to information technologies. A large number of detailed examples serve to better develop professional competencies in computer science.
Download or read book Concise Guide to Computing Foundations written by Kevin Brewer and published by Springer. This book was released on 2016-09-30 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will help future scientists to become more intelligent users of computing technology in their practice of science. The content is suitable for introductory courses on the foundations of computing and the specific application of computers in different areas of science. The text presents a set of modules for use in existing science courses in order to integrate individual aspects of computational thinking, as well as a set of modules introducing the computer science concepts needed to understand the computing involved. These modules guide science students in their independent learning. The book covers computing applications in such diverse areas as bioinformatics, chemical kinetics, hydrogeological modeling, and mechanics of materials, geographic information systems, flow analysis, the solving of equations, curve fitting, optimization, and scientific data acquisition. The computing topics covered include simulations, errors, data representation, algorithms, XMS, compression, databases, performance, and complexity.
Download or read book Concise Guide to Databases written by Konstantinos Domdouzis and published by Springer Nature. This book was released on 2021-05-20 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern businesses depend on data for their very survival, creating a need for sophisticated databases and database technologies to help store, organise and transport their valuable data. This updated and expanded, easy-to-read textbook/reference presents a comprehensive introduction to databases, opening with a concise history of databases and of data as an organisational asset. As relational database management systems are no longer the only database solution, the book takes a wider view of database technology, encompassing big data, NoSQL, object and object-relational, and in-memory databases. Presenting both theoretical and practical elements, the new edition also examines the issues of scalability, availability, performance and security encountered when building and running a database in the real world. Topics and features: Presents review and discussion questions at the end of each chapter, in addition to skill-building, hands-on exercises Provides new material on database adaptiveness, integration, and efficiency in relation to data growth Introduces a range of commercial databases and encourages the reader to experiment with these in an associated learning environment Reviews use of a variety of databases in business environments, including numerous examples Discusses areas for further research within this fast-moving domain With its learning-by-doing approach, supported by both theoretical and practical examples, this clearly-structured textbook will be of great value to advanced undergraduate and postgraduate students of computer science, software engineering, and information technology. Practising database professionals and application developers will also find the book an ideal reference that addresses today's business needs.
Download or read book Concise Guide to Quantum Machine Learning written by Davide Pastorello and published by Springer Nature. This book was released on 2022-12-16 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a brief but effective introduction to quantum machine learning (QML). QML is not merely a translation of classical machine learning techniques into the language of quantum computing, but rather a new approach to data representation and processing. Accordingly, the content is not divided into a “classical part” that describes standard machine learning schemes and a “quantum part” that addresses their quantum counterparts. Instead, to immerse the reader in the quantum realm from the outset, the book starts from fundamental notions of quantum mechanics and quantum computing. Avoiding unnecessary details, it presents the concepts and mathematical tools that are essential for the required quantum formalism. In turn, it reviews those quantum algorithms most relevant to machine learning. Later chapters highlight the latest advances in this field and discuss the most promising directions for future research. To gain the most from this book, a basic grasp of statistics and linear algebra is sufficient; no previous experience with quantum computing or machine learning is needed. The book is aimed at researchers and students with no background in quantum physics and is also suitable for physicists looking to enter the field of QML.
Download or read book Algorithms from THE BOOK written by Kenneth Lange and published by SIAM. This book was released on 2020-05-04 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.
Download or read book A Student s Guide to Numerical Methods written by Ian H. Hutchinson and published by Cambridge University Press. This book was released on 2015-04-30 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The plain language style, worked examples and exercises in this book help students to understand the foundations of computational physics and engineering.
Download or read book Accuracy and Stability of Numerical Algorithms written by Nicholas J. Higham and published by SIAM. This book was released on 2002-01-01 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
Download or read book The Essentials of Financial Modeling in Excel written by Michael Rees and published by John Wiley & Sons. This book was released on 2023-02-02 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and practical guide to financial modeling in Excel In The Essentials of Financial Modeling in Excel: A Concise Guide to Concepts and Methods, veteran quantitative modeling and business analysis expert Dr. Michael Rees delivers a practical and hands-on introduction to financial modeling in Excel. The author offers readers a well-structured and strategic toolkit to learn modeling from scratch, focusing on the core economic concepts and the structures commonly required within Excel models. Divided into six parts, the book discusses the use of models and the factors to consider when designing and building models so that they can be as powerful as possible, yet simple. . Readers will also find: The foundational structures and calculations most frequently used in modeling, including growth- and ratio-based methods, corkscrews, and waterfall analysis Walkthroughs of economic modeling, measurement, and evaluation, and the linking of these to the decision criteria. These include breakeven and payback analysis, compounding, discounting, calculation of returns, loan calculations, and others Structured approaches for modeling in corporate finance, including financial statement modeling, cash flow valuation, cost of capital, and ratio analysis Techniques to implement sensitivity and scenario analysis Core aspects of statistical analysis, including data preparation, manipulation, and integration The use of approximately 100 Excel functions within example modeling contexts Further Topics Sections, which introduce advanced aspects of many areas, in order to provide further benefit to more advance readers, whilst presenting the truly essential topics separately. Examples of these include introductions to PowerQuery and PowerPivot, as well as advanced waterfall structures An invaluable, all-in-one blueprint for learning financial modeling in Excel, this book is ideal for beginning and intermediate financial professionals and students seeking to build and reinforce essential topics in financial modeling.
Download or read book Numerical Simulation Advanced Techniques for Science and Engineering written by Ali Soofastaei and published by BoD – Books on Demand. This book was released on 2023-11-15 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation is a powerful tool used in various fields of science and engineering to model complex systems and predict their behavior. It involves developing mathematical models that describe the behavior of a system and using computer algorithms to solve these models numerically. By doing so, researchers and engineers can study the behavior of a system in detail, which may only be possible with analytical methods. Numerical simulation has many advantages over traditional analytical methods. It allows researchers and engineers to study complex systems’ behavior in detail and predict their behavior in different scenarios. It also allows for the optimization of systems and the identification of design flaws before they are built. However, numerical simulation has its limitations. It requires significant computational resources, and the accuracy of the results depends on the quality of the mathematical models and the discretization methods used. Nevertheless, numerical simulation remains a valuable tool in many fields and its importance is likely to grow as computational resources become more powerful and widely available. Numerical simulation is widely used in physics, engineering, computer science, and mathematics. In physics, for example, numerical simulation is used to study the behavior of complex systems such as weather patterns, fluid dynamics, and particle interactions. In engineering, it is used to design and optimize systems such as aircraft, cars, and buildings. In computer science, numerical simulation models and optimization algorithms and data structures. In mathematics, it is used to study complex mathematical models and to solve complex equations. This book familiarizes readers with the practical application of the numerical simulation technique to solve complex analytical problems in different industries and sciences.
Download or read book Mathematical Control and Numerical Applications written by Abdeljalil Nachaoui and published by Springer Nature. This book was released on 2021-10-30 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some sufficient mathematical content with expressive result. The aim of JANO13 is to bring together scientists to discuss their research in all the aspects of mathematics and their applications to different scientific discipline. The main topics of the conference is partial differential equations, mathematical control, numerical analysis and computer science. The conference is interested in recent developments on numerical analysis and real applications in computer science. The latter is viewed as a dynamic branch on the interface of mathematics and informatics that has been growing rapidly over the past several decades. However, its mathematical modelling and interpretation are still not well-explained and need much more clarifications. The main contributions of this book are to give some sufficient mathematical content with expressive results. As a growing field, it is gaining a lot of attention both in media and in the industry world, which will attract the interest of readers from different scientist disciplines.
Download or read book Innovative Computational Intelligence A Rough Guide to 134 Clever Algorithms written by Bo Xing and published by Springer Science & Business Media. This book was released on 2013-12-13 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first notable feature of this book is its innovation: Computational intelligence (CI), a fast evolving area, is currently attracting lots of researchers’ attention in dealing with many complex problems. At present, there are quite a lot competing books existing in the market. Nevertheless, the present book is markedly different from the existing books in that it presents new paradigms of CI that have rarely mentioned before, as opposed to the traditional CI techniques or methodologies employed in other books. During the past decade, a number of new CI algorithms are proposed. Unfortunately, they spread in a number of unrelated publishing directions which may hamper the use of such published resources. These provide us with motivation to analyze the existing research for categorizing and synthesizing it in a meaningful manner. The mission of this book is really important since those algorithms are going to be a new revolution in computer science. We hope it will stimulate the readers to make novel contributions or even start a new paradigm based on nature phenomena. Although structured as a textbook, the book's straightforward, self-contained style will also appeal to a wide audience of professionals, researchers and independent learners. We believe that the book will be instrumental in initiating an integrated approach to complex problems by allowing cross-fertilization of design principles from different design philosophies. The second feature of this book is its comprehensiveness: Through an extensive literature research, there are 134 innovative CI algorithms covered in this book.
Download or read book Extremal Optimization written by Yong-Zai Lu and published by CRC Press. This book was released on 2018-09-03 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors’ recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors’ recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.
Download or read book Mechanics and Dynamical Systems with Mathematica written by Nicola Bellomo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and Applied Mathematics Modeling the behavior of real physical systems by suitable evolution equa tions is a relevant, maybe the fundamental, aspect of the interactions be tween mathematics and applied sciences. Modeling is, however, only the first step toward the mathematical description and simulation of systems belonging to real world. Indeed, once the evolution equation is proposed, one has to deal with mathematical problems and develop suitable simula tions to provide the description of the real system according to the model. Within this framework, one has an evolution equation and the re lated mathematical problems obtained by adding all necessary conditions for their solution. Then, a qualitative analysis should be developed: this means proof of existence of solutions and analysis of their qualitative be havior. Asymptotic analysis may include a detailed description of stability properties. Quantitative analysis, based upon the application ofsuitable methods and algorithms for the solution of problems, ends up with the simulation that is the representation of the dependent variable versus the independent one. The information obtained by the model has to be compared with those deriving from the experimental observation of the real system. This comparison may finally lead to the validation of the model followed by its application and, maybe, further generalization.
Download or read book Advanced Signal Processing A Concise Guide written by Amir-Homayoon Najmi and published by McGraw Hill Professional. This book was released on 2020-08-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A comprehensive introduction to the mathematical principles and algorithms in statistical signal processing and modern neural networks. This text is an expanded version of a graduate course on advanced signal processing at the Johns Hopkins University Whiting school program for professionals with students from electrical engineering, physics, computer and data science, and mathematics backgrounds. It covers the theory underlying applications in statistical signal processing including spectral estimation, linear prediction, adaptive filters, and optimal processing of uniform spatial arrays. Unique among books on the subject, it also includes a comprehensive introduction to modern neural networks with examples in time series and image classification. Coverage includes: Mathematical structures of signal spaces and matrix factorizations linear time-invariant systems and transforms Least squares filters Random variables, estimation theory, and random processes Spectral estimation and autoregressive signal models linear prediction and adaptive filters Optimal processing of linear arrays Neural networks
Download or read book Principles of Financial Modelling written by Michael Rees and published by John Wiley & Sons. This book was released on 2018-03-16 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The comprehensive, broadly-applicable, real-world guide to financial modelling Principles of Financial Modelling – Model Design and Best Practices Using Excel and VBAcovers the full spectrum of financial modelling tools and techniques in order to provide practical skills that are grounded in real-world applications. Based on rigorously-tested materials created for consulting projects and for training courses, this book demonstrates how to plan, design and build financial models that are flexible, robust, transparent, and highly applicable to a wide range of planning, forecasting and decision-support contexts. This book integrates theory and practice to provide a high-value resource for anyone wanting to gain a practical understanding of this complex and nuanced topic. Highlights of its content include extensive coverage of: Model design and best practices, including the optimisation of data structures and layout, maximising transparency, balancing complexity with flexibility, dealing with circularity, model audit and error-checking Sensitivity and scenario analysis, simulation, and optimisation Data manipulation and analysis The use and choice of Excel functions and functionality, including advanced functions and those from all categories, as well as of VBA and its key areas of application within financial modelling The companion website provides approximately 235 Excel files (screen-clips of most of which are shown in the text), which demonstrate key principles in modelling, as well as providing many examples of the use of Excel functions and VBA macros. These facilitate learning and have a strong emphasis on practical solutions and direct real-world application. For practical instruction, robust technique and clear presentation, Principles of Financial Modelling is the premier guide to real-world financial modelling from the ground up. It provides clear instruction applicable across sectors, settings and countries, and is presented in a well-structured and highly-developed format that is accessible to people with different backgrounds.
Download or read book Business Risk and Simulation Modelling in Practice written by Michael Rees and published by John Wiley & Sons. This book was released on 2015-08-03 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complete guide to the principles and practice of risk quantification for business applications. The assessment and quantification of risk provide an indispensable part of robust decision-making; to be effective, many professionals need a firm grasp of both the fundamental concepts and of the tools of the trade. Business Risk and Simulation Modelling in Practice is a comprehensive, in–depth, and practical guide that aims to help business risk managers, modelling analysts and general management to understand, conduct and use quantitative risk assessment and uncertainty modelling in their own situations. Key content areas include: Detailed descriptions of risk assessment processes, their objectives and uses, possible approaches to risk quantification, and their associated decision-benefits and organisational challenges. Principles and techniques in the design of risk models, including the similarities and differences with traditional financial models, and the enhancements that risk modelling can provide. In depth coverage of the principles and concepts in simulation methods, the statistical measurement of risk, the use and selection of probability distributions, the creation of dependency relationships, the alignment of risk modelling activities with general risk assessment processes, and a range of Excel modelling techniques. The implementation of simulation techniques using both Excel/VBA macros and the @RISK Excel add-in. Each platform may be appropriate depending on the context, whereas the core modelling concepts and risk assessment contexts are largely the same in each case. Some additional features and key benefits of using @RISK are also covered. Business Risk and Simulation Modelling in Practice reflects the author′s many years in training and consultancy in these areas. It provides clear and complete guidance, enhanced with an expert perspective. It uses approximately one hundred practical and real-life models to demonstrate all key concepts and techniques; these are accessible on the companion website.