Download or read book Statistical Methods written by Rudolf J. Freund and published by Elsevier. This book was released on 2003-01-07 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Download or read book Regression Analysis and Linear Models written by Richard B. Darlington and published by Guilford Publications. This book was released on 2016-08-22 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.
Download or read book Applied Regression Analysis written by John O. Rawlings and published by Springer Science & Business Media. This book was released on 2006-03-31 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to statistical methods and a thoeretical linear models course. Applied Regression Analysis emphasizes the concepts and the analysis of data sets. It provides a review of the key concepts in simple linear regression, matrix operations, and multiple regression. Methods and criteria for selecting regression variables and geometric interpretations are discussed. Polynomial, trigonometric, analysis of variance, nonlinear, time series, logistic, random effects, and mixed effects models are also discussed. Detailed case studies and exercises based on real data sets are used to reinforce the concepts. The data sets used in the book are available on the Internet.
Download or read book Correlation and Regression Analysis written by Thomas J. Archdeacon and published by Univ of Wisconsin Press. This book was released on 1994 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: A blueprint for historians to understand and evaluate the variables and discusses the fundamentals of regression analysis. 2 looks at procedures for assessing the level of association among diagnostic methods for identifying and correcting shortcomings Finally, part 3 presents more advanced topics, including in regression models. quantitative analyses they're likely to encounter in journal literature and monographs on research in the social sciences. ignore the fact that most historians have little background in mathematics would be folly, to decipher equations and follow their logic. Concepts are introduced carefully, and the operation of equations is explained step by step. Annotation copyright by Book News, Inc., Portland, OR
Download or read book Regression Methods in Biostatistics written by Eric Vittinghoff and published by Springer Science & Business Media. This book was released on 2012 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fresh edition, substantially revised and augmented, provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics. The examples used, analyzed using Stata, can be applied to other areas.
Download or read book Introductory Business Statistics 2e written by Alexander Holmes and published by . This book was released on 2023-12-13 with total page 1801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Download or read book Multiple Regression and Beyond written by Timothy Z. Keith and published by Routledge. This book was released on 2019-01-14 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
Download or read book Statistical Concepts and Methods written by Gouri K. Bhattacharyya and published by John Wiley & Sons. This book was released on 1977-03-22 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This non-mathematical introductory statistics text combines clear explanation of concepts, extensive coverage of useful statistical techniques, and numerous illustrations with data from diverse fields. Throughout, the text emphasizes the assumptions and limitations of statistical methods so that gross abuses can be avoided. It strives to promote correct attitudes and thinking about statistics and its applications. This text should prove an excellent introduction and valuable reference to statistics for students and concerned lay persons.
Download or read book Logistic Regression written by Scott W. Menard and published by SAGE. This book was released on 2010 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally.
Download or read book Analysis of Variance Design and Regression written by Ronald Christensen and published by CRC Press. This book was released on 1996-06-01 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a comprehensive treatment of basic statistical methods and their applications. It focuses on the analysis of variance and regression, but also addressing basic ideas in experimental design and count data. The book has four connecting themes: similarity of inferential procedures, balanced one-way analysis of variance, comparison of models, and checking assumptions. Most inferential procedures are based on identifying a scalar parameter of interest, estimating that parameter, obtaining the standard error of the estimate, and identifying the appropriate reference distribution. Given these items, the inferential procedures are identical for various parameters. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of comparing the sample variance of the group means with the mean of the sample variance for each group. All balanced analysis of variance problems are considered in terms of computing sample variances for various group means. Comparing different models provides a structure for examining both balanced and unbalanced analysis of variance problems and regression problems. Checking assumptions is presented as a crucial part of every statistical analysis. Examples using real data from a wide variety of fields are used to motivate theory. Christensen consistently examines residual plots and presents alternative analyses using different transformation and case deletions. Detailed examination of interactions, three factor analysis of variance, and a split-plot design with four factors are included. The numerous exercises emphasize analysis of real data. Senior undergraduate and graduate students in statistics and graduate students in other disciplines using analysis of variance, design of experiments, or regression analysis will find this book useful.
Download or read book Regression Analysis written by Rudolf J. Freund and published by Elsevier. This book was released on 2006-05-30 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression Analysis provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design. - Examples and exercises contain real data and graphical illustration for ease of interpretation - Outputs from SAS 7, SPSS 7, Excel, and Minitab are used for illustration, but any major statisticalsoftware package will work equally well
Download or read book Linear Regression Analysis written by Xin Yan and published by World Scientific. This book was released on 2009 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.
Download or read book Regression Analysis written by Graybill and published by Wadsworth Publishing Company. This book was released on 1994 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression Analysis: Concepts and Applications focuses on thinking clearly about and solving practical statistical problems. The approach leads from the theoretical (meaning TTconceptualUU not TTmathematicalTT) to the applied, the idea being that samples (using theory) tell the investigator what needs to be known about populations (for application).
Download or read book Survey Sampling Theory and Applications written by Raghunath Arnab and published by Academic Press. This book was released on 2017-03-08 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survey Sampling Theory and Applications offers a comprehensive overview of survey sampling, including the basics of sampling theory and practice, as well as research-based topics and examples of emerging trends. The text is useful for basic and advanced survey sampling courses. Many other books available for graduate students do not contain material on recent developments in the area of survey sampling. The book covers a wide spectrum of topics on the subject, including repetitive sampling over two occasions with varying probabilities, ranked set sampling, Fays method for balanced repeated replications, mirror-match bootstrap, and controlled sampling procedures. Many topics discussed here are not available in other text books. In each section, theories are illustrated with numerical examples. At the end of each chapter theoretical as well as numerical exercises are given which can help graduate students. - Covers a wide spectrum of topics on survey sampling and statistics - Serves as an ideal text for graduate students and researchers in survey sampling theory and applications - Contains material on recent developments in survey sampling not covered in other books - Illustrates theories using numerical examples and exercises
Download or read book Essential Statistics Regression and Econometrics written by Gary Smith and published by Academic Press. This book was released on 2015-06-08 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essential Statistics, Regression, and Econometrics, Second Edition, is innovative in its focus on preparing students for regression/econometrics, and in its extended emphasis on statistical reasoning, real data, pitfalls in data analysis, and modeling issues. This book is uncommonly approachable and easy to use, with extensive word problems that emphasize intuition and understanding. Too many students mistakenly believe that statistics courses are too abstract, mathematical, and tedious to be useful or interesting. To demonstrate the power, elegance, and even beauty of statistical reasoning, this book provides hundreds of new and updated interesting and relevant examples, and discusses not only the uses but also the abuses of statistics. The examples are drawn from many areas to show that statistical reasoning is not an irrelevant abstraction, but an important part of everyday life. - Includes hundreds of updated and new, real-world examples to engage students in the meaning and impact of statistics - Focuses on essential information to enable students to develop their own statistical reasoning - Ideal for one-quarter or one-semester courses taught in economics, business, finance, politics, sociology, and psychology departments, as well as in law and medical schools - Accompanied by an ancillary website with an instructors solutions manual, student solutions manual and supplementing chapters
Download or read book A Conceptual Guide to Statistics Using SPSS written by Elliot T. Berkman and published by SAGE. This book was released on 2012 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book helps students develop a conceptual understanding of a variety of statistical tests by linking the statistics with the computational steps and output from SPSS. Learning how statistical ideas map onto computation in SPSS will help students build a better understanding of both. For example, seeing exactly how the concept of variance is used in SPSS-how it is converted into a number based on real data, which other concepts it is associated with, and where it appears in various statistical tests-will not only help students understand how to use statistical tests in SPSS and how to interpret their output, but will also teach them about the concept of variance itself. Each chapter begins with a student-friendly explanation of the concept behind each statistical test and how the test relates to that concept. The authors then walk through the steps to compute the test in SPSS and the output, pointing out wherever possible how the SPSS procedure and output connects back to the conceptual underpinnings of the test. Each of the steps is accompanied by annotated screen shots from SPSS, and relevant components of output are highlighted in both the text and in the figures. Sections explain the conceptual machinery underlying the statistical tests. In contrast to merely presenting the equations for computing the statistic, these sections describe the idea behind each test in plain language and help students make the connection between the ideas and SPSS procedures. These include extensive treatment of custom hypothesis testing in ANOVA, MANOVA, ANCOVA, and regression, and an entire chapter on the advanced matrix algebra functions available only through syntax in SPSS. The book will be appropriate for both advanced undergraduate and graduate level courses in statistics.