Download or read book Concentration Inequalities for Sums and Martingales written by Bernard Bercu and published by Springer. This book was released on 2015-09-29 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide an overview of historical and recent results on concentration inequalities for sums of independent random variables and for martingales. The first chapter is devoted to classical asymptotic results in probability such as the strong law of large numbers and the central limit theorem. Our goal is to show that it is really interesting to make use of concentration inequalities for sums and martingales. The second chapter deals with classical concentration inequalities for sums of independent random variables such as the famous Hoeffding, Bennett, Bernstein and Talagrand inequalities. Further results and improvements are also provided such as the missing factors in those inequalities. The third chapter concerns concentration inequalities for martingales such as Azuma-Hoeffding, Freedman and De la Pena inequalities. Several extensions are also provided. The fourth chapter is devoted to applications of concentration inequalities in probability and statistics.
Download or read book Concentration Inequalities written by Stéphane Boucheron and published by Oxford University Press. This book was released on 2013-02-07 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
Download or read book An Introduction to Matrix Concentration Inequalities written by Joel Tropp and published by . This book was released on 2015-05-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.
Download or read book Probabilistic Methods for Algorithmic Discrete Mathematics written by Michel Habib and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Download or read book Complex Graphs and Networks written by Fan R. K. Chung and published by American Mathematical Soc.. This book was released on 2006 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory is a primary tool for detecting numerous hidden structures in various information networks, including Internet graphs, social networks, biological networks, or any graph representing relations in massive data sets. This book explains the universal and ubiquitous coherence in the structure of these realistic but complex networks.
Download or read book Self Normalized Processes written by Victor H. Peña and published by Springer Science & Business Media. This book was released on 2008-12-25 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-normalized processes are of common occurrence in probabilistic and statistical studies. A prototypical example is Student's t-statistic introduced in 1908 by Gosset, whose portrait is on the front cover. Due to the highly non-linear nature of these processes, the theory experienced a long period of slow development. In recent years there have been a number of important advances in the theory and applications of self-normalized processes. Some of these developments are closely linked to the study of central limit theorems, which imply that self-normalized processes are approximate pivots for statistical inference. The present volume covers recent developments in the area, including self-normalized large and moderate deviations, and laws of the iterated logarithms for self-normalized martingales. This is the first book that systematically treats the theory and applications of self-normalization.
Download or read book The Probabilistic Method written by Noga Alon and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
Download or read book Random Graphs written by Svante Janson and published by John Wiley & Sons. This book was released on 2011-09-30 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified, modern treatment of the theory of random graphs-including recent results and techniques Since its inception in the 1960s, the theory of random graphs has evolved into a dynamic branch of discrete mathematics. Yet despite the lively activity and important applications, the last comprehensive volume on the subject is Bollobas's well-known 1985 book. Poised to stimulate research for years to come, this new work covers developments of the last decade, providing a much-needed, modern overview of this fast-growing area of combinatorics. Written by three highly respected members of the discrete mathematics community, the book incorporates many disparate results from across the literature, including results obtained by the authors and some completely new results. Current tools and techniques are also thoroughly emphasized. Clear, easily accessible presentations make Random Graphs an ideal introduction for newcomers to the field and an excellent reference for scientists interested in discrete mathematics and theoretical computer science. Special features include: * A focus on the fundamental theory as well as basic models of random graphs * A detailed description of the phase transition phenomenon * Easy-to-apply exponential inequalities for large deviation bounds * An extensive study of the problem of containing small subgraphs * Results by Bollobas and others on the chromatic number of random graphs * The result by Robinson and Wormald on the existence of Hamilton cycles in random regular graphs * A gentle introduction to the zero-one laws * Ample exercises, figures, and bibliographic references
Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Download or read book Martingales in Banach Spaces written by Gilles Pisier and published by Cambridge University Press. This book was released on 2016-06-06 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.
Download or read book Concentration of Measure for the Analysis of Randomized Algorithms written by Devdatt P. Dubhashi and published by Cambridge University Press. This book was released on 2009-06-15 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.
Download or read book Random Processes for Engineers written by Bruce Hajek and published by Cambridge University Press. This book was released on 2015-03-12 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Download or read book Concentration Inequalities and Model Selection written by Pascal Massart and published by Springer. This book was released on 2007-04-26 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentration inequalities have been recognized as fundamental tools in several domains such as geometry of Banach spaces or random combinatorics. They also turn to be essential tools to develop a non asymptotic theory in statistics. This volume provides an overview of a non asymptotic theory for model selection. It also discusses some selected applications to variable selection, change points detection and statistical learning.
Download or read book Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems written by Vladimir Koltchinskii and published by Springer. This book was released on 2011-07-29 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of these lecture notes is to provide an introduction to the general theory of empirical risk minimization with an emphasis on excess risk bounds and oracle inequalities in penalized problems. In recent years, there have been new developments in this area motivated by the study of new classes of methods in machine learning such as large margin classification methods (boosting, kernel machines). The main probabilistic tools involved in the analysis of these problems are concentration and deviation inequalities by Talagrand along with other methods of empirical processes theory (symmetrization inequalities, contraction inequality for Rademacher sums, entropy and generic chaining bounds). Sparse recovery based on l_1-type penalization and low rank matrix recovery based on the nuclear norm penalization are other active areas of research, where the main problems can be stated in the framework of penalized empirical risk minimization, and concentration inequalities and empirical processes tools have proved to be very useful.
Download or read book Probability for Statisticians written by Galen R. Shorack and published by Springer Science & Business Media. This book was released on 2006-05-02 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: The choice of examples used in this text clearly illustrate its use for a one-year graduate course. The material to be presented in the classroom constitutes a little more than half the text, while the rest of the text provides background, offers different routes that could be pursued in the classroom, as well as additional material that is appropriate for self-study. Of particular interest is a presentation of the major central limit theorems via Steins method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function, with both the bootstrap and trimming presented. The section on martingales covers censored data martingales.
Download or read book The Concentration of Measure Phenomenon written by Michel Ledoux and published by American Mathematical Soc.. This book was released on 2001 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. This book offers the basic techniques and examples of the concentration of measure phenomenon. It presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications and product measures.