EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book COMSOL5 for Engineers

    Book Details:
  • Author : Mehrzad Tabatabaian
  • Publisher : Mercury Learning and Information
  • Release : 2015-07-24
  • ISBN : 1942270453
  • Pages : 437 pages

Download or read book COMSOL5 for Engineers written by Mehrzad Tabatabaian and published by Mercury Learning and Information. This book was released on 2015-07-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMSOL5 Multiphysics® is one of the most valuable software modeling tools for engineers and scientists. This book, an updated edition of the previously published, COMSOL for Engineers, covers COMSOL5 which now includes a revolutionary tool, the Application Builder. This component enables users to build apps based on COMSOL models that can be run on almost any operating system (Windows, MAC, mobile/iOS, etc.). Designed for engineers from various disciplines, the book introduces multiphysics modeling techniques and examples accompanied by practical applications using COMSOL5.x. The main objective is to introduce readers to use COMSOL as an engineering tool for modeling, by solving examples that could become a guide for modeling similar or more complicated problems. The book provides a collection of examples and modeling guidelines through which readers can build their own models. The mathematical fundamentals, engineering principles, and design criteria are presented as integral parts of the examples. At the end of chapters are references that contain more in-depth physics, technical information, and data; these are referred to throughout the book and used in the examples. COMSOL5 for Engineers could be used to complement another text that provides background training in engineering computations and methods. Exercises are provided at the end of the text for use in adoption situations. Features: •Expands the Finite Element Method (FEM) theory and adds more examples from the original edition •Outlines the new features in COMSOL5, the graphical user interface (GUI), and how to build a COMSOL app for models •Includes apps for selected model examples-with parameterization of these models •Features new and modified, solved model examples, in addition to the models provided in the original edition •Companion disc with executable copies of each model and their related animations eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected].

Book Computational Fluid Dynamics and COMSOL Multiphysics

Download or read book Computational Fluid Dynamics and COMSOL Multiphysics written by Ashish S. Chaurasia and published by CRC Press. This book was released on 2021-12-29 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook covers computational fluid dynamics simulation using COMSOL Multiphysics® Modeling Software in chemical engineering applications. In the volume, the COMSOL Multiphysics package is introduced and applied to solve typical problems in chemical reactors, transport processes, fluid flow, and heat and mass transfer. Inspired by the difficulties of introducing the use of COMSOL Multiphysics software during classroom time, the book incorporates the author’s experience of working with undergraduate, graduate, and postgraduate students to make the book user friendly and that, at the same time, addresses typical examples within the subjects covered in the chemical engineering curriculum. Real-world problems require the use of simulation and optimization tools, and this volume shows how COMSOL Multiphysics software can be used for that purpose. Key features: • Includes over 500 step-by-step screenshots • Shows the graphical user interface of COMSOL, which does not require any programming effort • Provides chapter-end problems for extensive practice along with solutions • Includes actual examples of chemical reactors, transport processes, fluid flow, and heat and mass transfer This book is intended for students who want or need more help to solve chemical engineering assignments using computer software. It can also be used for computational courses in chemical engineering. It will also be a valuable resource for professors, research scientists, and practicing engineers.

Book Multiphysics Modeling Using COMSOL 5 and MATLAB

Download or read book Multiphysics Modeling Using COMSOL 5 and MATLAB written by Roger W. Pryor and published by Mercury Learning and Information. This book was released on 2021-12-03 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMSOL 5 and MATLAB are valuable software modeling tools for engineers and scientists. This updated edition includes five new models and explores a wide range of models in coordinate systems from 0D to 3D, introducing the numerical analysis techniques employed in COMSOL 5.6 and MATLAB software. The text presents electromagnetic, electronic, optical, thermal physics, and biomedical models as examples. It presents the fundamental concepts in the models and the step-by-step instructions needed to build each model. The companion files include all the built models for each step-by-step example presented in the text and the related animations, as specified. The book is designed to introduce modeling to an experienced engineer or can also be used for upper level undergraduate or graduate courses. FEATURES: Focuses on COMSOL 5.x and MATLAB models that demonstrate the use of concepts for later application in engineering, science, medicine, and biophysics for the development of devices and systems Includes companion files with executable copies of each model and related animations Includes detailed discussions of possible modeling errors and results Uses a step-by-step modeling methodology linked to the Fundamental Laws of Physics. The companion files are also available online by emailing the publisher with proof of purchase at [email protected].

Book Introduction to Integrative Engineering

Download or read book Introduction to Integrative Engineering written by Guigen Zhang and published by CRC Press. This book was released on 2017-03-03 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.

Book Geometry Creation and Import With COMSOL Multiphysics

Download or read book Geometry Creation and Import With COMSOL Multiphysics written by Layla S. Mayboudi and published by Mercury Learning and Information. This book was released on 2019-09-20 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the geometry creation techniques for use in finite element analysis. Examples are provided as a sequence of fin designs with progressively increasing complexity. A fin was selected as it is a feature widely employed for thermal management. As the content progresses, the reader learns to create or import a geometry into a FEM tool using COMSOL Multiphysics®. The fundamentals may also be applied to other commercial packages such as ANSYS® or AbaqusTM. The content can be utilized in a variety of engineering disciplines including mechanical, aerospace, biomedical, chemical, civil, and electrical. The book provides an overview of the tools available to create and interact with the geometry. It also takes a broader look on the world of geometry, showing how geometry is a fundamental part of nature and how it is interconnected with the world around us. Features: Includes example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications Provides geometry modeling examples created with built in features of COMSOL Multiphysics® v. 5.4 or imported from other dedicated CAD tools Presents meshing examples and provides practical advice on mesh generation Includes companion files with models and custom applications created with COMSOL Multiphysics® Application Builder.

Book Introduction to Chemical Engineering Computing

Download or read book Introduction to Chemical Engineering Computing written by Bruce A. Finlayson and published by John Wiley & Sons. This book was released on 2014-03-05 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author’s firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book’s accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.

Book Fluid Mechanics for Chemical Engineers

Download or read book Fluid Mechanics for Chemical Engineers written by James O. Wilkes and published by Prentice Hall. This book was released on 2017-07-20 with total page 1161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Chemical Engineer's Practical Guide to Fluid Mechanics: Now Includes COMSOL Multiphysics 5 Since most chemical processing applications are conducted either partially or totally in the fluid phase, chemical engineers need mastery of fluid mechanics. Such knowledge is especially valuable in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries. Fluid Mechanics for Chemical Engineers: with Microfluidics, CFD, and COMSOL Multiphysics 5, Third Edition, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on the book that earned Choice Magazine's Outstanding Academic Title award, this edition also gives a comprehensive introduction to the popular COMSOL Multiphysics 5 software. This third edition contains extensive coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using COMSOL Multiphysics 5 and ANSYS Fluent. The chapter on turbulence now presents valuable CFD techniques to investigate practical situations such as turbulent mixing and recirculating flows. Part I offers a clear, succinct, easy-to-follow introduction to macroscopic fluid mechanics, including physical properties; hydrostatics; basic rate laws; and fundamental principles of flow through equipment. Part II turns to microscopic fluid mechanics: Differential equations of fluid mechanics Viscous-flow problems, some including polymer processing Laplace's equation; irrotational and porous-media flows Nearly unidirectional flows, from boundary layers to lubrication, calendering, and thin-film applications Turbulent flows, showing how the k-ε method extends conventional mixing-length theory Bubble motion, two-phase flow, and fluidization Non-Newtonian fluids, including inelastic and viscoelastic fluids Microfluidics and electrokinetic flow effects, including electroosmosis, electrophoresis, streaming potentials, and electroosmotic switching Computational fluid mechanics with ANSYS Fluent and COMSOL Multiphysics Nearly 100 completely worked practical examples include 12 new COMSOL 5 examples: boundary layer flow, non-Newtonian flow, jet flow, die flow, lubrication, momentum diffusion, turbulent flow, and others. More than 300 end-of-chapter problems of varying complexity are presented, including several from University of Cambridge exams. The author covers all material needed for the fluid mechanics portion of the professional engineer's exam. The author's website (fmche.engin.umich.edu) provides additional notes, problem-solving tips, and errata. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Book Multiphysics Modeling Using COMSOL

Download or read book Multiphysics Modeling Using COMSOL written by Roger Pryor and published by Jones & Bartlett Learning. This book was released on 2011 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphysics Modeling Using COMSOL? rapidly introduces the senior level undergraduate, graduate or professional scientist or engineer to the art and science of computerized modeling for physical systems and devices. It offers a step-by-step modeling methodology through examples that are linked to the Fundamental Laws of Physics through a First Principles Analysis approach. The text explores a breadth of multiphysics models in coordinate systems that range from 1D to 3D and introduces the readers to the numerical analysis modeling techniques employed in the COMSOL? Multiphysics? software. After readers have built and run the examples, they will have a much firmer understanding of the concepts, skills, and benefits acquired from the use of computerized modeling techniques to solve their current technological problems and to explore new areas of application for their particular technological areas of interest.

Book Multiphysics Simulation

Download or read book Multiphysics Simulation written by Ercan M. Dede and published by Springer. This book was released on 2014-05-28 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today’s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code.

Book CFD Module

    Book Details:
  • Author : Mehrzad Tabatabaian
  • Publisher : Mercury Learning and Information
  • Release : 2015-05-15
  • ISBN : 1942270623
  • Pages : 213 pages

Download or read book CFD Module written by Mehrzad Tabatabaian and published by Mercury Learning and Information. This book was released on 2015-05-15 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book can be used as a reference for the topic of turbulence modeling, especially in an engineering modeling and simulation course or as a tool for professionals on practical applications. Turbulent flow modeling has many applications in industry. The relevant numerical methods have advanced to the level that could be used by industry professionals to model many natural turbulent flows with acceptable accuracy. In this book we cover the fundamentals of turbulence, modeling techniques, and algorithms (including RANS) available in COMSOL® as well as providing several modeling examples and instructions for building these models. The companion DVD includes models and figures discussed in the book. eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected]. Features: •Includes companion DVD with models and figures discussed in the book •Explains the physics and principles of turbulence and provides modeling examples using COMSOL

Book Multiphysics Modeling With Finite Element Methods

Download or read book Multiphysics Modeling With Finite Element Methods written by William B J Zimmerman and published by World Scientific Publishing Company. This book was released on 2006-10-25 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods for approximating partial differential equations that arise in science and engineering analysis find widespread application. Numerical analysis tools make the solutions of coupled physics, mechanics, chemistry, and even biology accessible to the novice modeler. Nevertheless, modelers must be aware of the limitations and difficulties in developing numerical models that faithfully represent the system they are modeling.This textbook introduces the intellectual framework for modeling with Comsol Multiphysics, a package which has unique features in representing multiply linked domains with complex geometry, highly coupled and nonlinear equation systems, and arbitrarily complicated boundary, auxiliary, and initial conditions. But with this modeling power comes great opportunities and great perils.Progressively, in the first part of the book the novice modeler develops an understanding of how to build up complicated models piecemeal and test them modularly. The second part of the book introduces advanced analysis techniques. The final part of the book deals with case studies in a broad range of application areas including nonlinear pattern formation, thin film dynamics and heterogeneous catalysis, composite and effective media for heat, mass, conductivity, and dispersion, population balances, tomography, multiphase flow, electrokinetic, microfluidic networks, plasma dynamics, and corrosion chemistry.As a revision of Process Modeling and Simulation with Finite Element Methods, this book uses the very latest features of Comsol Multiphysics. There are new case studies on multiphase flow with phase change, plasma dynamics, electromagnetohydrodynamics, microfluidic mixing, and corrosion. In addition, major improvements to the level set method for multiphase flow to ensure phase conservation is introduced.

Book Heat Transfer Modelling Using COMSOL

Download or read book Heat Transfer Modelling Using COMSOL written by Layla S. Mayboudi and published by Multiphysics Modeling. This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fins have been used historically as reliable design features for thermal management, which continues to be an important problem in engineering today. This book develops heat transfer models for progressively complex fin designs. Mathematicians, engineers, and analysts may equally benefit from the content as it provides the reader with numerical and analytical tools to approach general and thermal management heat transfer problems. The main focus is on the COMSOL(R) Multiphysics Heat Transfer module; however, the fundamentals may be applied to other commercial packages such as ANSYS and Abaqus. The content can be utilized in a variety of engineering disciplines including mechanical, aerospace, biomedical, chemical, civil, and electrical, etc. Features: +Includes numerous example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications +Uses COMSOL Multiphysics(R) version 5.3 in combination with the Heat Transfer Module to set up and carry out the numerical analysis for the models presented in the book +Presents mathematical methods related to the problems +Includes a companion disc with models and custom apps created with COMSOL Application Builder (available by emailing info @ merclearning.com with proof of purchase if e-version)

Book Fluid Mechanics for Chemical Engineers with Microfluidics and CFD

Download or read book Fluid Mechanics for Chemical Engineers with Microfluidics and CFD written by James O. Wilkes and published by Pearson Education. This book was released on 2006 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows"--Jacket.

Book The Finite Element Method

Download or read book The Finite Element Method written by Darrell W. Pepper and published by CRC Press. This book was released on 2017-04-11 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-explanatory guide introduces the basic fundamentals of the Finite Element Method in a clear manner using comprehensive examples. Beginning with the concept of one-dimensional heat transfer, the first chapters include one-dimensional problems that can be solved by inspection. The book progresses through more detailed two-dimensional elements to three-dimensional elements, including discussions on various applications, and ending with introductory chapters on the boundary element and meshless methods, where more input data must be provided to solve problems. Emphasis is placed on the development of the discrete set of algebraic equations. The example problems and exercises in each chapter explain the procedure for defining and organizing the required initial and boundary condition data for a specific problem, and computer code listings in MATLAB and MAPLE are included for setting up the examples within the text, including COMSOL files. Widely used as an introductory Finite Element Method text since 1992 and used in past ASME short courses and AIAA home study courses, this text is intended for undergraduate and graduate students taking Finite Element Methodology courses, engineers working in the industry that need to become familiar with the FEM, and engineers working in the field of heat transfer. It can also be used for distance education courses that can be conducted on the web. Highlights of the new edition include: - Inclusion of MATLAB, MAPLE code listings, along with several COMSOL files, for the example problems within the text. Power point presentations per chapter and a solution manual are also available from the web. - Additional introductory chapters on the boundary element method and the meshless method. - Revised and updated content. -Simple and easy to follow guidelines for understanding and applying the Finite Element Method.

Book Advanced Mathematics for Engineering Students

Download or read book Advanced Mathematics for Engineering Students written by Brent J. Lewis and published by Butterworth-Heinemann. This book was released on 2021-05-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)

Book Essential Quantum Mechanics for Electrical Engineers

Download or read book Essential Quantum Mechanics for Electrical Engineers written by Peter Deák and published by John Wiley & Sons. This book was released on 2017-06-19 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Der Autor dieses Lehrbuchs ist seit über 25 Jahren Dozent für Quantenmechanik in den Fachrichtungen Elektrotechnik und Informatik. Das Fachbuch ist wissenschaftlich fundiert und gut geschrieben, überzeugt durch eine ausgewogene Darstellung notwendiger formaler Mathematik und Text. Die Einführung fasst die Grundkonzepte der klassischen Physik zusammen und stellt einiger ihrer Versäumnisse heraus, die sich aus Phänomenen in Verbindung mit der Lichttechnik ergeben. Diese werden in den darauffolgenden drei Kapiteln ausführlich analysiert. Kapitel 5 geht über das Dualitätsprinzip hinaus und erläutert die Partikelkonzepte der Quantenmechanik sowie deren Folgen für die Elektrotechnik. In den Kapiteln 6 bis 8 werden die mathematischen Grundkonstruktionen beschrieben, mit denen sich der Zustand von Partikeln und deren Eigenschaften ableiten und vorhersagen lassen. Die beiden weiteren Kapitel zeigen zwei Beispiele hierfür mit Anwendungen von LEDs, Infrarotdetektoren, Quantenkaskadenlasern, Zener-Dioden und Flash-Speichern. In den letzten Kapiteln werden die Folgen der Quantenmechanik für die chemischen Eigenschaften von Atomen und anderen, aus vielen Elektronen bestehenden Systemen erörtert, abgerundet durch einen kurzen Einblick in die möglichen Hardwarekomponenten für die Quanteninformationsverarbeitung. Zu den vielfältigen didaktischen Merkmalen gehören auch Lernziele, Kapitelzusammenfassungen, Fragen zur Selbstüberprüfung sowie Problemlösungen. In den beiden Anhängen sind die notwendigen Kenntnisse der klassischen Physik und Mathematik zusammengefasst.

Book Hardcore Programming for Mechanical Engineers

Download or read book Hardcore Programming for Mechanical Engineers written by Angel Sola Orbaiceta and published by No Starch Press. This book was released on 2021-06-22 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardcore Programming for Mechanical Engineers is for intermediate programmers who want to write good applications that solve tough engineering problems – from scratch. This book will teach you how to solve engineering problems with Python. The “hardcore” approach means that you will learn to get the correct results by coding everything from scratch. Forget relying on third-party software – there are no shortcuts on the path to proficiency. Instead, using familiar concepts from linear algebra, geometry and physics, you’ll write your own libraries, draw your own primitives, and build your own applications. Author Angel Sola covers core programming techniques mechanical engineers need to know, with a focus on high-quality code and automated unit testing for error-free implementations. After basic primers on Python and using the command line, you’ll quickly develop a geometry toolbox, filling it with lines and shapes for diagramming problems. As your understanding grows chapter-by-chapter, you’ll create vector graphics and animations for dynamic simulations; you’ll code algorithms that can do complex numerical computations; and you’ll put all of this knowledge together to build a complete structural analysis application that solves a 2D truss problem – similar to the software projects conducted by real-world mechanical engineers. You'll learn: • How to use geometric primitives, like points and polygons, and implement matrices • Best practices for clean code, including unit testing, encapsulation, and expressive names • Processes for drawing images to the screen and creating animations inside Tkinter’s Canvas widget • How to write programs that read from a file, parse the data, and produce vector images • Numerical methods for solving large systems of linear equations, like the Cholesky decomposition algorithm