EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computer Vision and Action Recognition

Download or read book Computer Vision and Action Recognition written by Md. Atiqur Rahman Ahad and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human action analyses and recognition are challenging problems due to large variations in human motion and appearance, camera viewpoint and environment settings. The field of action and activity representation and recognition is relatively old, yet not well-understood by the students and research community. Some important but common motion recognition problems are even now unsolved properly by the computer vision community. However, in the last decade, a number of good approaches are proposed and evaluated subsequently by many researchers. Among those methods, some methods get significant attention from many researchers in the computer vision field due to their better robustness and performance. This book will cover gap of information and materials on comprehensive outlook – through various strategies from the scratch to the state-of-the-art on computer vision regarding action recognition approaches. This book will target the students and researchers who have knowledge on image processing at a basic level and would like to explore more on this area and do research. The step by step methodologies will encourage one to move forward for a comprehensive knowledge on computer vision for recognizing various human actions.

Book Human Activity Recognition and Prediction

Download or read book Human Activity Recognition and Prediction written by Yun Fu and published by Springer. This book was released on 2015-12-23 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques.

Book Motion History Images for Action Recognition and Understanding

Download or read book Motion History Images for Action Recognition and Understanding written by Md. Atiqur Rahman Ahad and published by Springer Science & Business Media. This book was released on 2012-12-28 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human action analysis and recognition is a relatively mature field, yet one which is often not well understood by students and researchers. The large number of possible variations in human motion and appearance, camera viewpoint, and environment, present considerable challenges. Some important and common problems remain unsolved by the computer vision community. However, many valuable approaches have been proposed over the past decade, including the motion history image (MHI) method. This method has received significant attention, as it offers greater robustness and performance than other techniques. This work presents a comprehensive review of these state-of-the-art approaches and their applications, with a particular focus on the MHI method and its variants.

Book Computer Vision     ECCV 2012

Download or read book Computer Vision ECCV 2012 written by Andrew Fitzgibbon and published by Springer. This book was released on 2012-09-26 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.

Book Action Recognition

    Book Details:
  • Author : Mark Magic
  • Publisher :
  • Release : 2019-08
  • ISBN : 9781086884470
  • Pages : 164 pages

Download or read book Action Recognition written by Mark Magic and published by . This book was released on 2019-08 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Updated in August, 2019 with color printing! * Research fields: Computer Vision and Machine Learning. * Book Topic: Action recognition from videos. * Recognition Tool: Recurrent Neural Network (RNN) with LSTM (Long-Short Term Memory) layer and fully connected layer. * Programming Language: Step-by-step implementation with Python in Jupyter Notebook. * Major Steps: Building a network, training the network, testing the network, comparing the network with an SVM (Support Vector Machines) classifier. * Processing Units to Execute the Codes: CPU and GPU (on Google Colaboratory). * Image Feature Extraction Tool: Pretrained VGG16 network. * Dataset: UCF101 (the first 15 actions, 2010 videos). * Main Results: For the testing data, the highest prediction accuracy from the RNN is 86.97%, which is a little higher than that from the SVM classifier (86.09%). * Detailed Description: Recurrent Neural Network (RNN) is a great tool to do video action recognition. This book built an RNN with an LSTM (Long-Short Term Memory) layer and a fully connected layer to do video action recognition. The RNN was trained and evaluated with VGG16 Features that were saved in .mat files; the features were extracted from images with a modified pretrained VGG16 network; the images were converted from videos in the UCF101 dataset, which has 101 different actions including 13,320 videos; please notice that only the first 15 actions in this dataset were used to do the recognition. The codes were implemented step-by-step with Python in Jupyter Notebook, and they could be executed on both CPUs and GPUs; free GPUs on Google Colaboratory were used as hardware accelerator to do most of the calculations. For the purpose of getting a higher testing accuracy, the architecture of the network was regulated, and parameters of the network and its optimizer were fine-tuned. For comparison purpose only, an SVM (Support Vector Machines) classifier was trained and tested. For the first 15 actions in the UCF101 dataset, the highest prediction accuracy of the testing data from the RNN is 86.97%, which is a little higher than that from the SVM classifier (86.09%). In conclusion, the performances of the RNN and the SVM classifier are approximately the same for the task in this book, which is a little embarrassed. However, RNN does have its own advantages in many other cases in the fields of Computer Vision and Machine Learning, and the implementation in this book can be an introduction to this topic in order to throw out a minnow to catch a whale.

Book Advances in Neural Networks   ISNN 2007

Download or read book Advances in Neural Networks ISNN 2007 written by Derong Liu and published by Springer. This book was released on 2007-07-14 with total page 1346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.

Book Computer Vision    ACCV 2012

Download or read book Computer Vision ACCV 2012 written by Kyoung Mu Lee and published by Springer. This book was released on 2013-03-27 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: The four-volume set LNCS 7724--7727 constitutes the thoroughly refereed post-conference proceedings of the 11th Asian Conference on Computer Vision, ACCV 2012, held in Daejeon, Korea, in November 2012. The total of 226 contributions presented in these volumes was carefully reviewed and selected from 869 submissions. The papers are organized in topical sections on object detection, learning and matching; object recognition; feature, representation, and recognition; segmentation, grouping, and classification; image representation; image and video retrieval and medical image analysis; face and gesture analysis and recognition; optical flow and tracking; motion, tracking, and computational photography; video analysis and action recognition; shape reconstruction and optimization; shape from X and photometry; applications of computer vision; low-level vision and applications of computer vision.

Book Handbook Of Pattern Recognition And Computer Vision  2nd Edition

Download or read book Handbook Of Pattern Recognition And Computer Vision 2nd Edition written by Chi Hau Chen and published by World Scientific. This book was released on 1999-03-12 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Book Machine Learning for Vision Based Motion Analysis

Download or read book Machine Learning for Vision Based Motion Analysis written by Liang Wang and published by Springer Science & Business Media. This book was released on 2010-11-18 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.

Book Deep Learning through Sparse and Low Rank Modeling

Download or read book Deep Learning through Sparse and Low Rank Modeling written by Zhangyang Wang and published by Academic Press. This book was released on 2019-04-12 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

Book Image and Signal Processing

    Book Details:
  • Author : Abderrahim Elmoataz
  • Publisher : Springer Science & Business Media
  • Release : 2010-06-09
  • ISBN : 364213680X
  • Pages : 618 pages

Download or read book Image and Signal Processing written by Abderrahim Elmoataz and published by Springer Science & Business Media. This book was released on 2010-06-09 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Conference on Image and Signal Processing, ICISP 2010, held in Québec, Canada June 30 - July 2, 2010. The 69 revised full papers were carefully selected from 165 submissions. The papers presented are organized in topical sections on Image Filtering and Coding, Pattern Recognition, Biometry, Signal Processing, Video Coding and Processing, Watermarking and Document Processing, Computer Vision and Biomedical Applications.

Book Deep Learning in Computer Vision

Download or read book Deep Learning in Computer Vision written by Mahmoud Hassaballah and published by CRC Press. This book was released on 2020-03-23 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Book Advanced Methods and Deep Learning in Computer Vision

Download or read book Advanced Methods and Deep Learning in Computer Vision written by E. R. Davies and published by Academic Press. This book was released on 2021-11-09 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses

Book Advanced Topics in Computer Vision

Download or read book Advanced Topics in Computer Vision written by Giovanni Maria Farinella and published by Springer Science & Business Media. This book was released on 2013-09-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to the co-recognition problem, and distance-based classifiers for large-scale image classification; describes how the four-color theorem can be used for solving MRF problems; introduces a Bayesian generative model for understanding indoor environments, and a boosting approach for generalizing the k-NN rule; discusses the issue of scene-specific object detection, and an approach for making temporal super resolution video.

Book Visual Indexing and Retrieval

Download or read book Visual Indexing and Retrieval written by Jenny Benois-Pineau and published by Springer Science & Business Media. This book was released on 2012-04-05 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research in content-based indexing and retrieval of visual information such as images and video has become one of the most populated directions in the vast area of information technologies. Social networks such as YouTube, Facebook, FileMobile, and DailyMotion host and supply facilities for accessing a tremendous amount of professional and user generated data. The areas of societal activity, such as, video protection and security, also generate thousands and thousands of terabytes of visual content. This book presents the most recent results and important trends in visual information indexing and retrieval. It is intended for young researchers, as well as, professionals looking for an algorithmic solution to a problem.

Book Computer Vision   ECCV 2008

Download or read book Computer Vision ECCV 2008 written by David Hutchison and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The four-volume set comprising LNCS volumes 5302/5303/5304/5305 constitutes the refereed proceedings of the 10th European Conference on Computer Vision, ECCV 2008, held in Marseille, France, in October 2008. The 243 revised papers presented were carefully reviewed and selected from a total of 871 papers submitted. The four books cover the entire range of current issues in computer vision. The papers are organized in topical sections on recognition, stereo, people and face recognition, object tracking, matching, learning and features, MRFs, segmentation, computational photography and active reconstruction.

Book Modern Deep Learning and Advanced Computer Vision

Download or read book Modern Deep Learning and Advanced Computer Vision written by J. Nedumaan and published by . This book was released on 2019-12-08 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision has enormous progress in modern times. Deep learning has driven and inferred a range of computer vision problems, such as object detection and recognition, face detection and recognition, motion tracking and estimation, transfer learning, action recognition, image segmentation, semantic segmentation, robotic vision. The chapters in this book are persuaded towards the applications of advanced computer vision using modern deep learning techniques. The authors trust in making the readers with more interesting illustrations in understanding the concepts of deep learning and computer vision at a simpler perspective approach.