Download or read book Physics of Semiconductor Devices 99 written by Vikram Kumar and published by SPIE-International Society for Optical Engineering. This book was released on 2000 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book SiGe Heterojunction Bipolar Transistors written by Peter Ashburn and published by John Wiley & Sons. This book was released on 2004-02-06 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: SiGe HBTs is a hot topic within the microelectronics community because of its applications potential within integrated circuits operating at radio frequencies. Applications range from high speed optical networking to wireless communication devices. The addition of germanium to silicon technologies to form silicon germanium (SiGe) devices has created a revolution in the semiconductor industry. These transistors form the enabling devices in a wide range of products for wireless and wired communications. This book features: SiGe products include chip sets for wireless cellular handsets as well as WLAN and high-speed wired network applications Describes the physics and technology of SiGe HBTs, with coverage of Si and Ge bipolar transistors Written with the practising engineer in mind, this book explains the operating principles and applications of bipolar transistor technology. Essential reading for practising microelectronics engineers and researchers. Also, optical communications engineers and communication technology engineers. An ideal reference tool for masters level students in microelectronics and electronics engineering.
Download or read book Nano Electronic Devices written by Dragica Vasileska and published by Springer Science & Business Media. This book was released on 2011-06-10 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the advanced simulation methods needed for proper modeling of state-of-the-art nanoscale devices. It systematically describes theoretical approaches and the numerical solutions that are used in explaining the operation of both power devices as well as nano-scale devices. It clearly explains for what types of devices a particular method is suitable, which is the most critical point that a researcher faces and has to decide upon when modeling semiconductor devices.
Download or read book Theory and Applications of Monte Carlo Simulations written by Victor Chan and published by . This book was released on 2013 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to introduce researchers and practitioners to recent advances and applications of Monte Carlo Simulation (MCS). Random sampling is the key of the MCS technique. The 11 chapters of this book collectively illustrates how such a sampling technique is exploited to solve difficult problems or analyze complex systems in various engineering and science domains. Issues related to the use of MCS including goodness-of-fit, uncertainty evaluation, variance reduction, optimization, and statistical estimation are discussed and examples of solutions are given. Novel applications of MCS are demonstrated in financial systems modeling, estimation of transition behavior of organic molecules, chemical reaction, particle diffusion, kinetic simulation of biophysics and biological data, and healthcare practices. To enlarge the accessibility of this book, both field-specific background materials and field-specific usages of MCS are introduced in most chapters. The aim of this book is to unify knowledge of MCS from different fields to facilitate research and new applications of MCS.
Download or read book Extreme Environment Electronics written by John D. Cressler and published by CRC Press. This book was released on 2017-12-19 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.
Download or read book Selected Experiments in Organic Chemistry written by George K. Helmkamp and published by . This book was released on 1964 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Micro and Smart Systems written by G. K. Ananthasuresh and published by Wiley Global Education. This book was released on 2012-04-13 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microsystems are systems that integrate, on a chip or a package, one or more of many different categories of microdevices. As the past few decades were dominated by the development and rapid miniaturization of circuitry, the current and coming decades are witnessing a similar revolution in the miniaturization of sensors, actuators, and electronics; and communication, control and power devices. Applications ranging from biomedicine to warfare are driving rapid innovation and growth in the field, which is pushing this topic into graduate and undergraduate curricula in electrical, mechanical, and biomedical engineering.
Download or read book Nanoelectronic Materials and Devices written by Christophe Labbé and published by Springer. This book was released on 2017-11-27 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers a collection of papers by international experts that were presented at the International Conference on NextGen Electronic Technologies (ICNETS2-2016). ICNETS2 encompassed six symposia covering all aspects of the electronics and communications domains, including relevant nano/micro materials and devices. Highlighting the latest research on nanoelectronic materials and devices, the book offers a valuable guide for researchers, practitioners and students working in the core areas of functional electronics nanomaterials, nanocomposites for energy application, sensing and high strength materials and simulation of novel device design structures for ultra-low power applications.
Download or read book Silicon Heterostructure Handbook written by John D. Cressler and published by CRC Press. This book was released on 2018-10-03 with total page 1248 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extraordinary combination of material science, manufacturing processes, and innovative thinking spurred the development of SiGe heterojunction devices that offer a wide array of functions, unprecedented levels of performance, and low manufacturing costs. While there are many books on specific aspects of Si heterostructures, the Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy is the first book to bring all aspects together in a single source. Featuring broad, comprehensive, and in-depth discussion, this handbook distills the current state of the field in areas ranging from materials to fabrication, devices, CAD, circuits, and applications. The editor includes "snapshots" of the industrial state-of-the-art for devices and circuits, presenting a novel perspective for comparing the present status with future directions in the field. With each chapter contributed by expert authors from leading industrial and research institutions worldwide, the book is unequalled not only in breadth of scope, but also in depth of coverage, timeliness of results, and authority of references. It also includes a foreword by Dr. Bernard S. Meyerson, a pioneer in SiGe technology. Containing nearly 1000 figures along with valuable appendices, the Silicon Heterostructure Handbook authoritatively surveys materials, fabrication, device physics, transistor optimization, optoelectronics components, measurement, compact modeling, circuit design, and device simulation.
Download or read book Nano CMOS and Post CMOS Electronics written by Saraju P. Mohanty and published by IET. This book was released on 2016-04-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over two volumes this work describes the modelling, design, and implementation of nano-scaled CMOS electronics, and the new generation of post-CMOS devices, at both the device and circuit levels.
Download or read book Modeling Self Heating Effects in Nanoscale Devices written by Katerina Raleva and published by Morgan & Claypool Publishers. This book was released on 2017-09-13 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.
Download or read book Computational Electronics written by Dragica Vasileska and published by CRC Press. This book was released on 2017-12-19 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of-the-art nanoscale devices. The first part examines semiclassical transport methods, including drift-diffusion, hydrodynamic, and Monte Carlo methods for solving the Boltzmann transport equation. Details regarding numerical implementation and sample codes are provided as templates for sophisticated simulation software. The second part introduces the density gradient method, quantum hydrodynamics, and the concept of effective potentials used to account for quantum-mechanical space quantization effects in particle-based simulators. Highlighting the need for quantum transport approaches, it describes various quantum effects that appear in current and future devices being mass-produced or fabricated as a proof of concept. In this context, it introduces the concept of effective potential used to approximately include quantum-mechanical space-quantization effects within the semiclassical particle-based device simulation scheme. Addressing the practical aspects of computational electronics, this authoritative resource concludes by addressing some of the open questions related to quantum transport not covered in most books. Complete with self-study problems and numerous examples throughout, this book supplies readers with the practical understanding required to create their own simulators.
Download or read book Topics In High Field Transport In Semiconductors written by Kevin F Brennan and published by World Scientific. This book was released on 2001-07-31 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines some of the charge carrier transport issues encountered in the field of modern semiconductor devices and novel materials. Theoretical approaches to the understanding and modeling of the relevant physical phenomena, seen in devices that have very small spatial dimensions and that operate under high electric field strength, are described in papers written by leading experts and pioneers in this field. In addition, the book examines the transport physics encountered in novel materials such as wide band gap semiconductors (GaN, SiC, etc.) as well as organic semiconductors. Topics in High Field Transport in Semiconductors provides a comprehensive overview that will be beneficial to newcomers as well as engineers and researchers engaged in this exciting field.
Download or read book Physics of Semiconductors and Nanostructures written by Jyoti Prasad Banerjee and published by CRC Press. This book was released on 2019-06-11 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.
Download or read book Quantum Transport in Ultrasmall Devices written by David K. Ferry and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: The operation of semiconductor devices depends upon the use of electrical potential barriers (such as gate depletion) in controlling the carrier densities (electrons and holes) and their transport. Although a successful device design is quite complicated and involves many aspects, the device engineering is mostly to devise a "best" device design by defIning optimal device structures and manipulating impurity profIles to obtain optimal control of the carrier flow through the device. This becomes increasingly diffIcult as the device scale becomes smaller and smaller. Since the introduction of integrated circuits, the number of individual transistors on a single chip has doubled approximately every three years. As the number of devices has grown, the critical dimension of the smallest feature, such as a gate length (which is related to the transport length defIning the channel), has consequently declined. The reduction of this design rule proceeds approximately by a factor of 1. 4 each generation, which means we will be using 0. 1-0. 15 ). lm rules for the 4 Gb chips a decade from now. If we continue this extrapolation, current technology will require 30 nm design rules, and a cell 3 2 size
Download or read book Large Scale Scientific Computing written by Ivan Lirkov and published by Springer. This book was released on 2009-03-26 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coverage in this proceedings volume includes robust multilevel and hierarchical preconditioning methods, applications for large scale computations and optimization of coupled engineering problems, and applications of metaheuristics to large-scale problems.
Download or read book Circuit Design for Reliability written by Ricardo Reis and published by Springer. This book was released on 2014-11-08 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units. The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management.