EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Strongly Correlated Systems

    Book Details:
  • Author : Adolfo Avella
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-05
  • ISBN : 3642351069
  • Pages : 350 pages

Download or read book Strongly Correlated Systems written by Adolfo Avella and published by Springer Science & Business Media. This book was released on 2013-04-05 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

Book Theoretical Methods for Strongly Correlated Electrons

Download or read book Theoretical Methods for Strongly Correlated Electrons written by David Sénéchal and published by Springer Science & Business Media. This book was released on 2006-05-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.

Book Correlated Electrons In Quantum Matter

Download or read book Correlated Electrons In Quantum Matter written by Peter Fulde and published by World Scientific. This book was released on 2012-08-08 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap.It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.

Book Emergent Phenomena in Correlated Matter

Download or read book Emergent Phenomena in Correlated Matter written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2013 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Monte Carlo Approaches for Correlated Systems

Download or read book Quantum Monte Carlo Approaches for Correlated Systems written by Federico Becca and published by Cambridge University Press. This book was released on 2017-11-30 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference for students and researchers working in condensed matter theory or those interested in advanced numerical methods for electronic simulation.

Book Quantum Hamiltonian Complexity

Download or read book Quantum Hamiltonian Complexity written by Sevag Gharibian and published by . This book was released on 2015-09-30 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. It provides a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field.

Book Computer Simulation Studies in Condensed Matter Physics XV

Download or read book Computer Simulation Studies in Condensed Matter Physics XV written by David P. Landau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over fifteen years ago, because of the tremendous increase in the power and utility of computer simulations, The University of Georgia formed the first institutional unit devoted to the use of simulations in research and teach ing: The Center for Simulational Physics. As the international simulations community expanded further, we sensed a need for a meeting place for both experienced simulators and neophytes to discuss new techniques and recent results in an environment which promoted lively discussion. As a consequence, the Center for Simulational Physics established an annual workshop on Re cent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's workshop was the fifteenth in this series, and the con tinued interest shown by the scientific community demonstrates quite clearly the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia, March 11-15, 2002, and these proceedings provide a "status report" on a number of important topics. This volume is published with the goal of timely dissemination of the material to a wider audience. We wish to offer a special thanks to IBM Corporation and to the National Science Foundation for partial support of this year's workshop. This volume contains both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics. We hope that each reader will benefit from specialized results as well as profit from exposure to new algorithms, methods of analysis, and conceptual devel opments. Athens, GA, USA D. P.

Book Bosonization and Strongly Correlated Systems

Download or read book Bosonization and Strongly Correlated Systems written by Alexander O. Gogolin and published by Cambridge University Press. This book was released on 2004-12-16 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed account of important technique for researchers and graduate students working in condensed matter and theoretical physics.

Book Condensed Matter Field Theory

Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Book Quantum Chemistry and Dynamics of Excited States

Download or read book Quantum Chemistry and Dynamics of Excited States written by Leticia González and published by John Wiley & Sons. This book was released on 2021-02-01 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.

Book Understanding Quantum Phase Transitions

Download or read book Understanding Quantum Phase Transitions written by Lincoln Carr and published by CRC Press. This book was released on 2010-11-02 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit

Book Manipulating Quantum Systems

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2020-09-14
  • ISBN : 0309499542
  • Pages : 315 pages

Download or read book Manipulating Quantum Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-09-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Book Quantum Monte Carlo Approaches for Correlated Systems

Download or read book Quantum Monte Carlo Approaches for Correlated Systems written by Federico Becca and published by Cambridge University Press. This book was released on 2017-11-30 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to state-of-the-art quantum Monte Carlo techniques for applications in strongly-interacting systems. Including variational wave functions, stochastic samplings, the variational technique, optimisation techniques, real-time dynamics and projection methods and recent developments on the continuum space. An extensive resource for students and researchers.

Book Tensor Network Contractions

Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.

Book Quantum Monte Carlo Methods

Download or read book Quantum Monte Carlo Methods written by James Gubernatis and published by Cambridge University Press. This book was released on 2016-06-02 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first textbook to provide a pedagogical examination of the major algorithms used in quantum Monte Carlo simulations.

Book 2d Quantum Metamaterials  Proceedings Of The 2018 Nist Workshop   2018 Nist Workshop

Download or read book 2d Quantum Metamaterials Proceedings Of The 2018 Nist Workshop 2018 Nist Workshop written by Wiley P Kirk and published by World Scientific. This book was released on 2019-09-12 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting developments in strategic areas of science and engineering makes for possible new engineered structures identified as quantum metamaterials. These new structures offer unusual properties that involve fundamental concepts such as entangled quantum states, superposition, quantum coherence, analog quantum simulation, etc., opening a new era of technological advancement. This manuscript presents the output of a recent workshop held at the National Institute of Standards and Technology in 2018. It covers the key scientific ideas, various technical approaches under investigation, and the potential technological outcomes in a new field of research.

Book Out of Equilibrium Physics of Correlated Electron Systems

Download or read book Out of Equilibrium Physics of Correlated Electron Systems written by Roberta Citro and published by Springer. This book was released on 2018-07-26 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.