EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Strategies for Nonlinear Model Predictive Control

Download or read book Computational Strategies for Nonlinear Model Predictive Control written by Matthew J. Tenny and published by . This book was released on 2002 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Receding Horizon Control

Download or read book Receding Horizon Control written by Wook Hyun Kwon and published by Springer Science & Business Media. This book was released on 2005-10-04 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easy-to-follow learning structure makes absorption of advanced material as pain-free as possible Introduces complete theories for stability and cost monotonicity for constrained and non-linear systems as well as for linear systems In co-ordination with MATLAB® files available from springeronline.com, exercises and examples give the student more practice in the predictive control and filtering techniques presented

Book Nonlinear Model Predictive Control

Download or read book Nonlinear Model Predictive Control written by Lalo Magni and published by Springer. This book was released on 2009-05-18 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past few years significant progress has been achieved in the field of nonlinear model predictive control (NMPC), also referred to as receding horizon control or moving horizon control. More than 250 papers have been published in 2006 in ISI Journals. With this book we want to bring together the contributions of a diverse group of internationally well recognized researchers and industrial practitioners, to critically assess the current status of the NMPC field and to discuss future directions and needs. The book consists of selected papers presented at the International Workshop on Assessment an Future Directions of Nonlinear Model Predictive Control that took place from September 5 to 9, 2008, in Pavia, Italy.

Book Computationally Efficient Model Predictive Control Algorithms

Download or read book Computationally Efficient Model Predictive Control Algorithms written by Maciej Ławryńczuk and published by Springer. This book was released on 2016-08-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: · A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. · Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. · The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). · The MPC algorithms with neural approximation with no on-line linearization. · The MPC algorithms with guaranteed stability and robustness. · Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.

Book Nonlinear Programming

    Book Details:
  • Author : Lorenz T. Biegler
  • Publisher : SIAM
  • Release : 2010-01-01
  • ISBN : 0898719380
  • Pages : 411 pages

Download or read book Nonlinear Programming written by Lorenz T. Biegler and published by SIAM. This book was released on 2010-01-01 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses modern nonlinear programming (NLP) concepts and algorithms, especially as they apply to challenging applications in chemical process engineering. The author provides a firm grounding in fundamental NLP properties and algorithms, and relates them to real-world problem classes in process optimization, thus making the material understandable and useful to chemical engineers and experts in mathematical optimization.

Book Model Predictive Control in the Process Industry

Download or read book Model Predictive Control in the Process Industry written by Eduardo F. Camacho and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Book Handbook of Model Predictive Control

Download or read book Handbook of Model Predictive Control written by Saša V. Raković and published by Springer. This book was released on 2018-09-01 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.

Book Model Predictive Control

Download or read book Model Predictive Control written by James Blake Rawlings and published by . This book was released on 2017 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Assessment and Future Directions of Nonlinear Model Predictive Control

Download or read book Assessment and Future Directions of Nonlinear Model Predictive Control written by Rolf Findeisen and published by Springer. This book was released on 2007-09-08 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.

Book Nonlinear Model Predictive Control of Combustion Engines

Download or read book Nonlinear Model Predictive Control of Combustion Engines written by Thivaharan Albin Rajasingham and published by Springer Nature. This book was released on 2021-04-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the nonlinear model predictive control (NMPC) concept for application to innovative combustion engines. Readers can use this book to become more expert in advanced combustion engine control and to develop and implement their own NMPC algorithms to solve challenging control tasks in the field. The significance of the advantages and relevancy for practice is demonstrated by real-world engine and vehicle application examples. The author provides an overview of fundamental engine control systems, and addresses emerging control problems, showing how they can be solved with NMPC. The implementation of NMPC involves various development steps, including: • reduced-order modeling of the process; • analysis of system dynamics; • formulation of the optimization problem; and • real-time feasible numerical solution of the optimization problem. Readers will see the entire process of these steps, from the fundamentals to several innovative applications. The application examples highlight the actual difficulties and advantages when implementing NMPC for engine control applications. Nonlinear Model Predictive Control of Combustion Engines targets engineers and researchers in academia and industry working in the field of engine control. The book is laid out in a structured and easy-to-read manner, supported by code examples in MATLAB®/Simulink®, thus expanding its readership to students and academics who would like to understand the fundamental concepts of NMPC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Proceedings of the 5th International Conference on Electrical Engineering and Control Applications   Volume 1

Download or read book Proceedings of the 5th International Conference on Electrical Engineering and Control Applications Volume 1 written by Salim Ziani and published by Springer Nature. This book was released on with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 21st European Symposium on Computer Aided Process Engineering

Download or read book 21st European Symposium on Computer Aided Process Engineering written by and published by Elsevier. This book was released on 2011-06-10 with total page 2086 pages. Available in PDF, EPUB and Kindle. Book excerpt: The European Symposium on Computer Aided Process Engineering (ESCAPE) series presents the latest innovations and achievements of leading professionals from the industrial and academic communities. The ESCAPE series serves as a forum for engineers, scientists, researchers, managers and students to present and discuss progress being made in the area of computer aided process engineering (CAPE). European industries large and small are bringing innovations into our lives, whether in the form of new technologies to address environmental problems, new products to make our homes more comfortable and energy efficient or new therapies to improve the health and well being of European citizens. Moreover, the European Industry needs to undertake research and technological initiatives in response to humanity's "Grand Challenges," described in the declaration of Lund, namely, Global Warming, Tightening Supplies of Energy, Water and Food, Ageing Societies, Public Health, Pandemics and Security. Thus, the Technical Theme of ESCAPE 21 will be "Process Systems Approaches for Addressing Grand Challenges in Energy, Environment, Health, Bioprocessing & Nanotechnologies."

Book Predictive Control for Linear and Hybrid Systems

Download or read book Predictive Control for Linear and Hybrid Systems written by Francesco Borrelli and published by Cambridge University Press. This book was released on 2017-06-22 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).

Book Model Based Predictive Control

Download or read book Model Based Predictive Control written by J.A. Rossiter and published by CRC Press. This book was released on 2017-07-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control (MPC) has become a widely used methodology across all engineering disciplines, yet there are few books which study this approach. Until now, no book has addressed in detail all key issues in the field including apriori stability and robust stability results. Engineers and MPC researchers now have a volume that provides a complete overview of the theory and practice of MPC as it relates to process and control engineering. Model-Based Predictive Control, A Practical Approach, analyzes predictive control from its base mathematical foundation, but delivers the subject matter in a readable, intuitive style. The author writes in layman's terms, avoiding jargon and using a style that relies upon personal insight into practical applications. This detailed introduction to predictive control introduces basic MPC concepts and demonstrates how they are applied in the design and control of systems, experiments, and industrial processes. The text outlines how to model, provide robustness, handle constraints, ensure feasibility, and guarantee stability. It also details options in regard to algorithms, models, and complexity vs. performance issues.

Book Computational Intelligence and Optimization Methods for Control Engineering

Download or read book Computational Intelligence and Optimization Methods for Control Engineering written by Maude Josée Blondin and published by Springer Nature. This book was released on 2019-09-20 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents some recent and principal developments related to computational intelligence and optimization methods in control. Theoretical aspects and practical applications of control engineering are covered by 14 self-contained contributions. Additional gems include the discussion of future directions and research perspectives designed to add to the reader’s understanding of both the challenges faced in control engineering and the insights into the developing of new techniques. With the knowledge obtained, readers are encouraged to determine the appropriate control method for specific applications.

Book Nonlinear Approaches in Engineering Application

Download or read book Nonlinear Approaches in Engineering Application written by Liming Dai and published by Springer Nature. This book was released on 2022-04-27 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Approaches in Engineering Applications: Design Engineering Problems examines the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Chapters are authored by world-class scientists and researchers and focus on the application of nonlinear approaches in different disciplines of engineering and scientific applications, with a strong emphasis on application, physical meaning, and methodologies of the approaches. Topics covered are of high interest in engineering and physics, and an attempt has been made to expose engineers and researchers to a broad range of practical topics and approaches. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of engineering, physics, and mathematics in nonlinear approaches to solving engineering and science problems.

Book Computational Intelligence And Its Applications  Evolutionary Computation  Fuzzy Logic  Neural Network And Support Vector Machine Techniques

Download or read book Computational Intelligence And Its Applications Evolutionary Computation Fuzzy Logic Neural Network And Support Vector Machine Techniques written by Hung Tan Nguyen and published by World Scientific. This book was released on 2012-07-17 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational intelligence techniques and their applications — fast-growing and promising research topics that have drawn a great deal of attention from researchers over the years. It brings together many different aspects of the current research on intelligence technologies such as neural networks, support vector machines, fuzzy logic and evolutionary computation, and covers a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. Fundamental concepts and essential analysis of various computational techniques are presented to offer a systematic and effective tool for better treatment of different applications, and simulation and experimental results are included to illustrate the design procedure and the effectiveness of the approaches./a