EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Optical Phase Imaging

Download or read book Computational Optical Phase Imaging written by Cheng Liu and published by Springer Nature. This book was released on 2022-04-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, computational optical phase imaging techniques are presented along with Matlab codes that allow the reader to run their own simulations and gain a thorough understanding of the current state-of-the-art. The book focuses on modern applications of computational optical phase imaging in engineering measurements and biomedical imaging. Additionally, it discusses the future of computational optical phase imaging, especially in terms of system miniaturization and deep learning-based phase retrieval.

Book Computational Optical Imaging

Download or read book Computational Optical Imaging written by Zhengjun Liu and published by Springer Nature. This book was released on with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Imaging and Spectroscopy

Download or read book Optical Imaging and Spectroscopy written by David J. Brady and published by John Wiley & Sons. This book was released on 2009-04-27 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statistical models of optical fields The basic function of modern optical detectors and focal plane arrays Practical strategies for coherence measurement in imaging system design The sampling theory of digital imaging and spectroscopy for both conventional and emerging compressive and generalized measurement strategies Measurement code design Linear and nonlinear signal estimation The book concludes with a review of numerous design strategies in spectroscopy and imaging and clearly outlines the benefits and limits of each approach, including coded aperture and imaging spectroscopy, resonant and filter-based systems, and integrated design strategies to improve image resolution, depth of field, and field of view. Optical Imaging and Spectroscopy is an indispensable textbook for advanced undergraduate and graduate courses in optical sensor design. In addition to its direct applicability to optical system design, unique perspectives on computational sensor design presented in the text will be of interest for sensor designers in radio and millimeter wave, X-ray, and acoustic systems.

Book Fourier Optics and Computational Imaging

Download or read book Fourier Optics and Computational Imaging written by Kedar Khare and published by John Wiley & Sons. This book was released on 2015-09-21 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both the mathematics of inverse problems and optical systems design, and includes a review of the mathematical methods and Fourier optics. The first part of the book deals with the mathematical tools in detail with minimal assumption about prior knowledge on the part of the reader. The second part of the book discusses concepts in optics, particularly propagation of optical waves and coherence properties of optical fields that form the basis of the computational models used for image recovery. The third part provides a discussion of specific imaging systems that illustrate the power of the hybrid computational imaging model in enhancing imaging performance. A number of exercises are provided for readers to develop further understanding of computational imaging. While the focus of the book is largely on optical imaging systems, the key concepts are discussed in a fairly general manner so as to provide useful background for understanding the mechanisms of a diverse range of imaging modalities.

Book Fourier Optics and Computational Imaging

Download or read book Fourier Optics and Computational Imaging written by Kedar Khare and published by John Wiley & Sons. This book was released on 2015-08-04 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both the mathematics of inverse problems and optical systems design, and includes a review of the mathematical methods and Fourier optics. The first part of the book deals with the mathematical tools in detail with minimal assumption about prior knowledge on the part of the reader. The second part of the book discusses concepts in optics, particularly propagation of optical waves and coherence properties of optical fields that form the basis of the computational models used for image recovery. The third part provides a discussion of specific imaging systems that illustrate the power of the hybrid computational imaging model in enhancing imaging performance. A number of exercises are provided for readers to develop further understanding of computational imaging. While the focus of the book is largely on optical imaging systems, the key concepts are discussed in a fairly general manner so as to provide useful background for understanding the mechanisms of a diverse range of imaging modalities.

Book Computational Optical Biomedical Spectroscopy and Imaging

Download or read book Computational Optical Biomedical Spectroscopy and Imaging written by Sarhan M. Musa and published by CRC Press. This book was released on 2015-01-28 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Optical Biomedical Spectroscopy and Imaging covers recent discoveries and research in the field by some of the best inventors and researchers in the world. It also presents useful computational methods and applications used in optical biomedical spectroscopy and imaging. Topics covered include: New trends in immunohistochemical, genome, and metabolomics imaging Computer-aided diagnosis of interstitial lung diseases based on CT image analysis Functional near-infrared spectroscopy and its applications in neurosciences Applications of vibrational spectroscopic imaging in personal care studies Induced optical natural fluorescence spectroscopy for Giardia lamblia cysts Nanoimaging and polarimetric exploratory data analysis Fluorescence bioimaging with applications to chemistry Medical imaging instrumentation and techniques The book also discusses future applications, directions, opportunities, and challenges of optical biomedical spectroscopy and imaging in technical industry, academia, and government. This valuable resource introduces key concepts of computational methods used in optical biomedical spectroscopy and imaging in a manner that is easily understandable to beginners and experts alike.

Book FOURIER OPTICS AND COMPUTATIONAL IMAGING

Download or read book FOURIER OPTICS AND COMPUTATIONAL IMAGING written by KEDAR. BUTOLA KHARE (MANSI. RAJORA, SUNAINA.) and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Imaging

Download or read book Computational Imaging written by Ayush Bhandari and published by MIT Press. This book was released on 2022-10-25 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be used as an instructional resource for computer imaging courses and as a reference for professionals. It covers the fundamentals of the field, current research and applications, and light transport techniques. The text first presents an imaging toolkit, including optics, image sensors, and illumination, and a computational toolkit, introducing modeling, mathematical tools, model-based inversion, data-driven inversion techniques, and hybrid inversion techniques. It then examines different modalities of light, focusing on the plenoptic function, which describes degrees of freedom of a light ray. Finally, the text outlines light transport techniques, describing imaging systems that obtain micron-scale 3D shape or optimize for noise-free imaging, optical computing, and non-line-of-sight imaging. Throughout, it discusses the use of computational imaging methods in a range of application areas, including smart phone photography, autonomous driving, and medical imaging. End-of-chapter exercises help put the material in context.

Book Fourier Ptychographic Imaging

Download or read book Fourier Ptychographic Imaging written by Guoan Zheng and published by Morgan & Claypool Publishers. This book was released on 2016-06-30 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the concept of Fourier ptychography, a new imaging technique that bypasses the resolution limit of the employed optics. In particular, it transforms the general challenge of high-throughput, high-resolution imaging from one that is coupled to the physical limitations of the optics to one that is solvable through computation. Demonstrated in a tutorial form and providing many MATLAB® simulation examples for the reader, it also discusses the experimental implementation and recent developments of Fourier ptychography. This book will be of interest to researchers and engineers learning simulation techniques for Fourier optics and the Fourier ptychography concept.

Book Biomedical Optical Phase Microscopy and Nanoscopy

Download or read book Biomedical Optical Phase Microscopy and Nanoscopy written by Natan T. Shaked and published by Academic Press. This book was released on 2012-11-05 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading optical phase microscopy experts, this book is a comprehensive reference to phase microscopy and nanoscopy techniques for biomedical applications, including differential interference contrast (DIC) microscopy, phase contrast microscopy, digital holographic microscopy, optical coherence tomography, tomographic phase microscopy, spectral-domain phase detection, and nanoparticle usage for phase nanoscopy The Editors show biomedical and optical engineers how to use phase microscopy for visualizing unstained specimens, and support the theoretical coverage with applied content and examples on designing systems and interpreting results in bio- and nanoscience applications. Provides a comprehensive overview of the principles and techniques of optical phase microscopy and nanoscopy with biomedical applications. Tips/advice on building systems and working with advanced imaging biomedical techniques, including interpretation of phase images, and techniques for quantitative analysis based on phase microscopy. Interdisciplinary approach that combines optical engineering, nanotechnology, biology and medical aspects of this topic. Each chapter includes practical implementations and worked examples.

Book Optical Compressive Imaging

Download or read book Optical Compressive Imaging written by Adrian Stern and published by CRC Press. This book was released on 2016-11-17 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dedicated overview of optical compressive imaging addresses implementation aspects of the revolutionary theory of compressive sensing (CS) in the field of optical imaging and sensing. It overviews the technological opportunities and challenges involved in optical design and implementation, from basic theory to optical architectures and systems for compressive imaging in various spectral regimes, spectral and hyperspectral imaging, polarimetric sensing, three-dimensional imaging, super-resolution imaging, lens-free, on-chip microscopy, and phase sensing and retrieval. The reader will gain a complete introduction to theory, experiment, and practical use for reducing hardware, shortening image scanning time, and improving image resolution as well as other performance parameters. Optics practitioners and optical system designers, electrical and optical engineers, mathematicians, and signal processing professionals will all find the book a unique trove of information and practical guidance. Delivers the first book on compressed sensing dealing with system development for a wide variety of optical imaging and sensing applications. Covers the fundamentals of CS theory, including noise and algorithms, as well as basic design approaches for data acquisition in optics. Addresses the challenges of implementing compressed sensing theory in the context of different optical imaging designs, from 3D imaging to tomography and microscopy. Provides an essential resource for the design of new and improved devices with improved image quality and shorter acquisition times. Adrian Stern, PhD, is associate professor and head of the Electro-Optical Engineering Unit at Ben-Gurion University of the Negev, Israel. He is an elected Fellow of SPIE.

Book Integrated Computational Imaging Systems

Download or read book Integrated Computational Imaging Systems written by Joseph Van der Gracht and published by . This book was released on 2002 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digest and expanded papers from a November 2001 meeting offer definitions of integrated imaging, present examples of imaging systems, and describe concepts from information theory as they apply to the analysis and design of imaging systems. Material is in sections on key topics, wavefront coding, computational microscopes, information theory and design, imaging systems, implementation, hyperspectral systems, and analysis and situation. Three-dimensional coherence imaging in the Fresnel domain, spatial tomography and coherence microscopy, and modeling of sparse aperture telescope image quality are some of the areas discussed. Annotation copyrighted by Book News, Inc., Portland, OR

Book Generalized Phase Contrast

Download or read book Generalized Phase Contrast written by Jesper Glückstad and published by Springer. This book was released on 2009-08-20 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than the restrictive assumptions of conventional Zernike phase contrast analysis and achieves an expanded range of validity beyond weak phase perturbations. The generalized analysis yields design criteria for tuning experimental parameters to achieve optimal performance in terms of accuracy, fidelity and light efficiency. Optimization can address practical issues, such as finding an optimal spatial filter for the chosen application, and can even enable a Reverse Phase Contrast mode where intensity patterns are converted into a phase modulation.

Book Optical and Digital Image Processing

Download or read book Optical and Digital Image Processing written by Gabriel Cristobal and published by John Wiley & Sons. This book was released on 2013-02-12 with total page 949 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Moore's law has fostered the steady growth of the field of digital image processing, though the computational complexity remains a problem for most of the digital image processing applications. In parallel, the research domain of optical image processing has matured, potentially bypassing the problems digital approaches were suffering and bringing new applications. The advancement of technology calls for applications and knowledge at the intersection of both areas but there is a clear knowledge gap between the digital signal processing and the optical processing communities. This book covers the fundamental basis of the optical and image processing techniques by integrating contributions from both optical and digital research communities to solve current application bottlenecks, and give rise to new applications and solutions. Besides focusing on joint research, it also aims at disseminating the knowledge existing in both domains. Applications covered include image restoration, medical imaging, surveillance, holography, etc... "a very good book that deserves to be on the bookshelf of a serious student or scientist working in these areas." Source: Optics and Photonics News

Book Computational Lithography

Download or read book Computational Lithography written by Xu Ma and published by John Wiley & Sons. This book was released on 2011-01-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.

Book Computational Fourier Optics

    Book Details:
  • Author : Jim Bernard Breckinridge
  • Publisher : SPIE-International Society for Optical Engineering
  • Release : 2011
  • ISBN : 9780819482044
  • Pages : 232 pages

Download or read book Computational Fourier Optics written by Jim Bernard Breckinridge and published by SPIE-International Society for Optical Engineering. This book was released on 2011 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fourier Optics is a text that shows the reader in a tutorial form how to implement Fourier optical theory and analytic methods on the computer. A primary objective is to give students of Fourier optics the capability of programming their own basic wave optic beam propagations and imaging simulations. The book will also be of interest to professional engineers and physicists learning Fourier optics simulation techniques-either as a self-study text or a text for a short course. For more advanced study, the latter chapters and appendices provide methods and examples for modeling beams and pupil functions with more complicated structure, aberrations, and partial coherence. For a student in a course on Fourier optics, this book is a concise, accessible, and practical companion to any of several excellent textbooks on Fourier optical theory.

Book Fourier Optics and Computational Imaging

Download or read book Fourier Optics and Computational Imaging written by Kedar Khare and published by Springer Nature. This book was released on 2023-01-02 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is designed to serve as a textbook for advanced undergraduate and graduate students enrolled in physics and electronics and communication engineering and mathematics. The book provides an introduction to Fourier optics in light of new developments in the area of computational imaging over the last couple of decades. There is an in-depth discussion of mathematical methods such as Fourier analysis, linear systems theory, random processes, and optimization-based image reconstruction techniques. These techniques are very much essential for a better understanding of the working of computational imaging systems. It discusses topics in Fourier optics, e.g., diffraction phenomena, coherent and incoherent imaging systems, and some aspects of coherence theory. These concepts are then used to describe several system ideas that combine optical hardware design and image reconstruction algorithms, such as digital holography, iterative phase retrieval, super-resolution imaging, point spread function engineering for enhanced depth-of-focus, projection-based imaging, single-pixel or ghost imaging, etc. The topics covered in this book can provide an elementary introduction to the exciting area of computational imaging for students who may wish to work with imaging systems in their future careers.