Download or read book Computational Methods in Genome Research written by Sándor Suhai and published by Springer Science & Business Media. This book was released on 1994 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapters originating as plenary lectures at the July 1992 symposium provide a bridge between experimental databases (information) on the one hand and theoretical concepts (biological and genetic knowledge) on the other. Among the topics: informatics and experiments for the Human Genome Project; the
Download or read book Computational Methods for Understanding Bacterial and Archaeal Genomes written by Ying Xu and published by World Scientific. This book was released on 2008 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.
Download or read book Computational Genome Analysis written by Richard C. Deonier and published by Springer Science & Business Media. This book was released on 2005-12-27 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.
Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Download or read book Introduction to Computational Genomics written by Nello Cristianini and published by Cambridge University Press. This book was released on 2006-12-14 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Where did SARS come from? Have we inherited genes from Neanderthals? How do plants use their internal clock? The genomic revolution in biology enables us to answer such questions. But the revolution would have been impossible without the support of powerful computational and statistical methods that enable us to exploit genomic data. Many universities are introducing courses to train the next generation of bioinformaticians: biologists fluent in mathematics and computer science, and data analysts familiar with biology. This readable and entertaining book, based on successful taught courses, provides a roadmap to navigate entry to this field. It guides the reader through key achievements of bioinformatics, using a hands-on approach. Statistical sequence analysis, sequence alignment, hidden Markov models, gene and motif finding and more, are introduced in a rigorous yet accessible way. A companion website provides the reader with Matlab-related software tools for reproducing the steps demonstrated in the book.
Download or read book Sequence Evolution Function written by Eugene V. Koonin and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.
Download or read book Computational Methods in Genome Research written by Sándor Suhai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of computational methods to solve scientific and pratical problems in genome research created a new interdisciplinary area that transcends boundaries traditionally separating genetics, biology, mathematics, physics, and computer science. Computers have been, of course, intensively used for many year~ in the field of life sciences, even before genome research started, to store and analyze DNA or proteins sequences, to explore and model the three-dimensional structure, the dynamics and the function of biopolymers, to compute genetic linkage or evolutionary processes etc. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function of genomes of higher organisms, has generated, however, not only a huge and burgeoning body of data but also a new class of scientific questions. The nature and complexity of these questions will require, beyond establishing a new kind of alliance between experimental and theoretical disciplines, also the development of new generations both in computer software and hardware technologies, respectively. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can ·attack with success. Many of us still feel that computational models rationalizing experimental findings in genome research fulfil their promises more slowly than desired. There also is an uncertainity concerning the real position of a 'theoretical genome research' in the network of established disciplines integrating their efforts in this field.
Download or read book Theoretical and Computational Methods in Genome Research written by Sándor Suhai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application ofcomputational methods to solve scientific and practical problems in genome research created a new interdisciplinary area that transcends boundaries tradi tionally separating genetics, biology, mathematics, physics, and computer science. Com puters have, of course, been intensively used in the field of life sciences for many years, even before genome research started, to store and analyze DNA or protein sequences; to explore and model the three-dimensional structure, the dynamics, and the function of biopolymers; to compute genetic linkage or evolutionary processes; and more. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function ofgenomes ofhigher organisms, has generated, how ever, not only a huge and exponentially increasing body of data but also a new class of scientific questions. The nature and complexity of these questions will also require, be yond establishing a new kind ofalliance between experimental and theoretical disciplines, the development of new generations both in computer software and hardware technolo gies. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can attack with suc cess. Many of us still feel that computational models rationalizing experimental findings in genome research fulfill their promises more slowly than desired. There is also an uncer tainty concerning the real position of a "theoretical genome research" in the network of established disciplines integrating their efforts in this field.
Download or read book Computational Biology and Bioinformatics written by Ka-Chun Wong and published by CRC Press. This book was released on 2016-04-27 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advances in biotechnology such as the next generation sequencing technologies are occurring at breathtaking speed. Advances and breakthroughs give competitive advantages to those who are prepared. However, the driving force behind the positive competition is not only limited to the technological advancement, but also to the companion data analy
Download or read book Neural Networks and Genome Informatics written by C.H. Wu and published by Elsevier. This book was released on 2012-12-02 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive reference in the field of neural networks and genome informatics. The tutorial of neural network foundations introduces basic neural network technology and terminology. This is followed by an in-depth discussion of special system designs for building neural networks for genome informatics, and broad reviews and evaluations of current state-of-the-art methods in the field. This book concludes with a description of open research problems and future research directions.
Download or read book Computational Methods With Applications In Bioinformatics Analysis written by Jeffrey J P Tsai and published by World Scientific. This book was released on 2017-06-09 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compendium contains 10 chapters written by world renowned researchers with expertise in semantic computing, genome sequence analysis, biomolecular interaction, time-series microarray analysis, and machine learning algorithms.The salient feature of this book is that it highlights eight types of computational techniques to tackle different biomedical applications. These techniques include unsupervised learning algorithms, principal component analysis, fuzzy integral, graph-based ensemble clustering method, semantic analysis, interolog approach, molecular simulations and enzyme kinetics.The unique volume will be a useful reference material and an inspirational read for advanced undergraduate and graduate students, computer scientists, computational biologists, bioinformatics and biomedical professionals.
Download or read book Handbook of Research on Computational Methodologies in Gene Regulatory Networks written by Das, Sanjoy and published by IGI Global. This book was released on 2009-10-31 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on methods widely used in modeling gene networks including structure discovery, learning, and optimization"--Provided by publisher.
Download or read book Evolutionary Genomics written by Maria Anisimova and published by Humana Press. This book was released on 2012-03-08 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together with early theoretical work in population genetics, the debate on sources of genetic makeup initiated by proponents of the neutral theory made a solid contribution to the spectacular growth in statistical methodologies for molecular evolution. Evolutionary Genomics: Statistical and Computational Methods is intended to bring together the more recent developments in the statistical methodology and the challenges that followed as a result of rapidly improving sequencing technologies. Presented by top scientists from a variety of disciplines, the collection includes a wide spectrum of articles encompassing theoretical works and hands-on tutorials, as well as many reviews with key biological insight. Volume 2 begins with phylogenomics and continues with in-depth coverage of natural selection, recombination, and genomic innovation. The remaining chapters treat topics of more recent interest, including population genomics, -omics studies, and computational issues related to the handling of large-scale genomic data. Written in the highly successful Methods in Molecular BiologyTM series format, this work provides the kind of advice on methodology and implementation that is crucial for getting ahead in genomic data analyses. Comprehensive and cutting-edge, Evolutionary Genomics: Statistical and Computational Methods is a treasure chest of state-of the-art methods to study genomic and omics data, certain to inspire both young and experienced readers to join the interdisciplinary field of evolutionary genomics.
Download or read book Biological Sequence Analysis written by Richard Durbin and published by Cambridge University Press. This book was released on 1998-04-23 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Download or read book Computational Epigenetics and Diseases written by and published by Academic Press. This book was released on 2019-02-06 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. - Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases - Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA - Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases
Download or read book Compact Handbook of Computational Biology written by A.K. Konopka and published by CRC Press. This book was released on 2004-08-30 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The assimilation of computational methods into the life sciences has played an important role in advancing biological research. From sequencing genomes to discovering motifs in large collections of functionally equivalent sequences of nucleic acids and proteins, the value of powerful computational tools has become abundantly clear. The Compact Hand
Download or read book Introduction to Computational Biology written by Michael S. Waterman and published by CRC Press. This book was released on 2018-05-02 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology is in the midst of a era yielding many significant discoveries and promising many more. Unique to this era is the exponential growth in the size of information-packed databases. Inspired by a pressing need to analyze that data, Introduction to Computational Biology explores a new area of expertise that emerged from this fertile field- the combination of biological and information sciences. This introduction describes the mathematical structure of biological data, especially from sequences and chromosomes. After a brief survey of molecular biology, it studies restriction maps of DNA, rough landmark maps of the underlying sequences, and clones and clone maps. It examines problems associated with reading DNA sequences and comparing sequences to finding common patterns. The author then considers that statistics of pattern counts in sequences, RNA secondary structure, and the inference of evolutionary history of related sequences. Introduction to Computational Biology exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. Written to describe mathematical formulation and development, this book helps set the stage for even more, truly interdisciplinary work in biology.