EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Methods for Nonlinear Elliptic Eigenvalue Problems

Download or read book Computational Methods for Nonlinear Elliptic Eigenvalue Problems written by Shirley Barbara Pomeranz and published by . This book was released on 1987 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods for Nonlinear Elliptic Differential Equations

Download or read book Numerical Methods for Nonlinear Elliptic Differential Equations written by Klaus Boehmer and published by OUP Oxford. This book was released on 2010-10-07 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear elliptic problems play an increasingly important role in mathematics, science and engineering, creating an exciting interplay between the subjects. This is the first and only book to prove in a systematic and unifying way, stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation theory. Examples are given for linear to fully nonlinear problems (highest derivatives occur nonlinearly) and for the most important space discretization methods: conforming and nonconforming finite element, discontinuous Galerkin, finite difference, wavelet (and, in a volume to follow, spectral and meshfree) methods. A number of specific long open problems are solved here: numerical methods for fully nonlinear elliptic problems, wavelet and meshfree methods for nonlinear problems, and more general nonlinear boundary conditions. We apply it to all these problems and methods, in particular to eigenvalues, monotone operators, quadrature approximations, and Newton methods. Adaptivity is discussed for finite element and wavelet methods. The book has been written for graduate students and scientists who want to study and to numerically analyze nonlinear elliptic differential equations in Mathematics, Science and Engineering. It can be used as material for graduate courses or advanced seminars.

Book Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators

Download or read book Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators written by István Faragó and published by Nova Publishers. This book was released on 2002 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators - Theory & Applications

Book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Download or read book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem written by Roland Glowinski and published by SIAM. This book was released on 2015-11-04 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Book Arc Length Continuation and Multi Grid Techniques for Nonlinear Elliptic Eigenvalue Problems

Download or read book Arc Length Continuation and Multi Grid Techniques for Nonlinear Elliptic Eigenvalue Problems written by Tony F. C. Chan and published by . This book was released on 1981 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: We investigate multi-grid methods for solving linear systems arising from arc-length continuation techniques applied to nonlinear elliptic eigenvalue problems. We find that the usual multi-grid methods diverge in the neighborhood of singular points of the solution branches. As a result, the continuation method is unable to continue past a limit point in the Bratu problem. This divergence is analysed and a modified multi-grid algorithm has been devised based on this analysis. In principle, this new multi-grid algorithm converges for elliptic systems arbitrarily close to singularity and has been successfully in conjunction with arc-length continuation procedures on the model problem. In the worst situation, both the storage and the computational work are only about a factor of two more than the unmodified multi-grid methods. (Author).

Book Guaranteed Computational Methods for Self Adjoint Differential Eigenvalue Problems

Download or read book Guaranteed Computational Methods for Self Adjoint Differential Eigenvalue Problems written by Xuefeng Liu and published by Springer Nature. This book was released on with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on Numerical Methods for Non Linear Variational Problems

Download or read book Lectures on Numerical Methods for Non Linear Variational Problems written by R. Glowinski and published by Springer Science & Business Media. This book was released on 2008-01-22 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: When Herb Keller suggested, more than two years ago, that we update our lectures held at the Tata Institute of Fundamental Research in 1977, and then have it published in the collection Springer Series in Computational Physics, we thought, at first, that it would be an easy task. Actually, we realized very quickly that it would be more complicated than what it seemed at first glance, for several reasons: 1. The first version of Numerical Methods for Nonlinear Variational Problems was, in fact, part of a set of monographs on numerical mat- matics published, in a short span of time, by the Tata Institute of Fun- mental Research in its well-known series Lectures on Mathematics and Physics; as might be expected, the first version systematically used the material of the above monographs, this being particularly true for Lectures on the Finite Element Method by P. G. Ciarlet and Lectures on Optimization—Theory and Algorithms by J. Cea. This second version had to be more self-contained. This necessity led to some minor additions in Chapters I-IV of the original version, and to the introduction of a chapter (namely, Chapter Y of this book) on relaxation methods, since these methods play an important role in various parts of this book.

Book Numerical Methods for General and Structured Eigenvalue Problems

Download or read book Numerical Methods for General and Structured Eigenvalue Problems written by Daniel Kressner and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Book Optimization in Solving Elliptic Problems

Download or read book Optimization in Solving Elliptic Problems written by Eugene G. D'yakonov and published by CRC Press. This book was released on 2018-05-04 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied. Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems. Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema

Book The Numerical Solution of Elliptic Equations

Download or read book The Numerical Solution of Elliptic Equations written by Garrett Birkhoff and published by SIAM. This book was released on 1971-01-01 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise survey of the current state of knowledge in 1972 about solving elliptic boundary-value eigenvalue problems with the help of a computer. This volume provides a case study in scientific computing?the art of utilizing physical intuition, mathematical theorems and algorithms, and modern computer technology to construct and explore realistic models of problems arising in the natural sciences and engineering.

Book Numerical Methods for Nonlinear Variational Problems

Download or read book Numerical Methods for Nonlinear Variational Problems written by Roland Glowinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.

Book Numerical Methods for Nonlinear Elliptic Differential Equations

Download or read book Numerical Methods for Nonlinear Elliptic Differential Equations written by Klaus Boehmer and published by OUP Oxford. This book was released on 2010-10-07 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear elliptic problems are important to Mathematics, Science and Engineering. This is the first and only book to handle systematically the different numerical methods for these problems. Several long open problems are solved here for the first time.

Book Numerical Methods for Large Eigenvalue Problems

Download or read book Numerical Methods for Large Eigenvalue Problems written by Yousef Saad and published by SIAM. This book was released on 2011-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

Book Methods for Analysis of Nonlinear Elliptic Boundary Value Problems

Download or read book Methods for Analysis of Nonlinear Elliptic Boundary Value Problems written by I. V. Skrypnik and published by American Mathematical Soc.. This book was released on 1994-01-01 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.

Book High Precision Methods in Eigenvalue Problems and Their Applications

Download or read book High Precision Methods in Eigenvalue Problems and Their Applications written by Leonid D. Akulenko and published by CRC Press. This book was released on 2004-10-15 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1989 with total page 1134 pages. Available in PDF, EPUB and Kindle. Book excerpt: