Download or read book Computational Methods for Integral Equations written by L. M. Delves and published by CUP Archive. This book was released on 1985 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a readable account of techniques for numerical solutions.
Download or read book Computational Methods for Linear Integral Equations written by Prem Kythe and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.
Download or read book Solution Methods for Integral Equations written by M. A. Goldberg and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integral Equations written by Wolfgang Hackbusch and published by Birkhäuser. This book was released on 2012-12-06 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Download or read book Linear and Nonlinear Integral Equations written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2011-11-24 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Download or read book The Classical Theory of Integral Equations written by Stephen M. Zemyan and published by Springer Science & Business Media. This book was released on 2012-07-10 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.
Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Download or read book The Numerical Solution of Integral Equations of the Second Kind written by Kendall E. Atkinson and published by Cambridge University Press. This book was released on 1997-06-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Download or read book Handbook of Computational Methods for Integration written by Prem K. Kythe and published by CRC Press. This book was released on 2004-12-20 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past 20 years, there has been enormous productivity in theoretical as well as computational integration. Some attempts have been made to find an optimal or best numerical method and related computer code to put to rest the problem of numerical integration, but the research is continuously ongoing, as this problem is still very much open-ended. The importance of numerical integration in so many areas of science and technology has made a practical, up-to-date reference on this subject long overdue. The Handbook of Computational Methods for Integration discusses quadrature rules for finite and infinite range integrals and their applications in differential and integral equations, Fourier integrals and transforms, Hartley transforms, fast Fourier and Hartley transforms, Laplace transforms and wavelets. The practical, applied perspective of this book makes it unique among the many theoretical books on numerical integration and quadrature. It will be a welcomed addition to the libraries of applied mathematicians, scientists, and engineers in virtually every discipline.
Download or read book Integral Equation Methods in Scattering Theory written by David Colton and published by SIAM. This book was released on 2013-11-15 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Download or read book Collocation Methods for Volterra Integral and Related Functional Differential Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2004-11-15 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Download or read book Integral Equation Methods for Electromagnetic and Elastic Waves written by Weng Cho Chew and published by Morgan & Claypool Publishers. This book was released on 2009 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms
Download or read book Boundary Integral Equations written by George C. Hsiao and published by Springer Nature. This book was released on 2021-03-26 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.
Download or read book Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations written by Peter M. van den Berg and published by John Wiley & Sons. This book was released on 2021-02-15 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to wave-field computational methods based on contrast source type of integral equations Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations presents a text that examines wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods. Written by a noted expert on the topic, the book provides a guide to efficient methods for calculating wave fields in a known inhomogeneous medium. The author provides a link between the fundamental scattering theory and its discrete counterpart and discusses the forward scattering problem based on the contrast-source integral equations. The book fully describes the calculation of wave fields inside and outside a scattering object with general shape and material property and reviews the inverse scattering problem, in which material properties are resolved from wave-field measurements outside the scattering object. The theoretical approach is the inverse of the forward scattering problem that determines how radiation is scattered, based on the scattering object. This important book: Provides a guide to the effects of scalar waves, acoustic waves and electromagnetic waves Describes computer modeling in 1D, 2D and 3D models Includes an online site for computer codes with adjustable configurations Written for students, researchers, and professionals, Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations offers a guide to wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods.
Download or read book Computational Methods for Electromagnetics written by Andrew F. Peterson and published by Universities Press. This book was released on 2001 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment, Employing a unified and coherent approach that is unmatched in the field, the authors deatil both integral and differential equations using the method-of-moments and finite-element procedures.
Download or read book Handbook of Integral Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2008-02-12 with total page 1143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Download or read book Volterra Integral Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2017-01-20 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: See publisher description :