EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Investigation Of The Dynamics Of Inertial Particles In Homogeneous Turbulent Shear Flow

Download or read book Computational Investigation Of The Dynamics Of Inertial Particles In Homogeneous Turbulent Shear Flow written by Parvez Sam Sukheswalla and published by . This book was released on 2015 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle-laden turbulent shear flows are ubiquitous in environmental and industrial flow-systems, and their analysis is thus of prime importance. In this work, we study the motion of a dilute suspension of particles in a non-stationary homogeneous turbulent shear flow (HTSF), subject to varying levels of imposed mean-shear, gravity, and inertia. We use direct numerical simulations (DNS) of the fluid velocity field (coupled with Lagrangian particle tracking), to assess the influence of flow-anisotropy and gravity on the motion of the particles. We first discuss numerical challenges encountered while performing DNS of HTSF at higher Reynolds numbers. The presence of sharp velocity gradients in the HTSF flow field is found to cause premature loss of resolution at the small scales, leading to shortened simulation-times. To counter this, the existing pseudo-spectral DNS setup is augmented with a Weighted Essentially Non-Oscillatory (WENO) scheme, enabling numerically-stable HTSF simulations at higher Reynolds numbers. We then consider the motion of individual particles as they interact with the anisotropic topology of the turbulence. In contrast to isotropic turbulence, particles are found to collect within vortex layers, regions where strong vorticity and strain are coupled with low streamline curvature. Shear-induced anisotropy in the turbulence also leads to reduced gravitational settling speeds for intermediate-inertia particles, though stronger gravity overcomes this effect. Particle velocity variances are found to be highly anisotropic at stronger shear, while gravity now tends to diminish this effect by limiting the interaction-time between particles and turbulence. Shear and gravity acting together cause particle acceleration variances to exceed those of the underlying fluid, corroborating findings from past turbulent boundary layer experiments. Analytical expressions are derived for the mean velocities and accelerations of the particles, and are in agreement with the DNS results. Finally, we analyze the relative velocities and clustering characteristics of particle pairs, and find that stronger shear and gravity suppress path-history effects for particles with stronger inertia. Shear-induced anisotropy in pair-statistics is affected by both inertia and gravity, with stronger gravity seen to oppose the action of shear. Changes in the relative-velocity anisotropy are correlated to the trends shown by single-particle velocity variances. Particle collision rates increase with stronger shear, and are found to scale in proportion to the underlying turbulence timescales.

Book Computational Investigation of the Effects of Turbulence  Inertia  and Gravity on Particle Dynamics

Download or read book Computational Investigation of the Effects of Turbulence Inertia and Gravity on Particle Dynamics written by Peter John Ireland and published by . This book was released on 2015 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, we examine the motion of particles which are subjected to varying levels of turbulence, inertia, and gravity, in both homogeneous and inhomogeneous turbulence. These investigations are performed through direct numerical simulation (DNS) of the Eulerian fluid velocity field combined with Lagrangian particle tracking. The primary motivation of these investigations is to better understand and model the dynamics and growth of water droplets in warm, cumulus clouds. In the first part of this work, we discuss the code we developed for these simulations, Highly Parallel Particle-laden flow Solver for Turbulence Research (HiPPSTR). HiPPSTR uses efficient parallelization strategies, timeintegration techniques, and interpolation methods to enable massively parallel simulations of three-dimensional, particle-laden turbulence. In the second, third, and fourth sections of this work, we analyze simulations of particle-laden flows which are representative of those at the edges and cores of clouds. In the second section, we consider the mixing of droplets near interfaces with varying turbulence intensities and gravitational orientations, to provide insight into the dynamics near cloud edges. The simulations are parameterized to match windtunnel experiments of particle mixing which were conducted at Cornell, and the DNS and experimental results are compared and contrasted. Mixing is suppressed when turbulence intensities differ across the interface, and in all cases, the particle concentrations are subject to large fluctuations. In the third and fourth sections, we use HiPPSTR to analyze droplet motion in isotropic turbulence, which we take to be representative of adiabatic cloud cores. The third section examines the Reynolds-number scaling of single-particle and particle-pair statistics without gravity, while the fourth section shows results when gravity is included. While weakly inertial particles preferentially sample certain regions of the flow, gravity reduces the degree of preferential sampling by limiting the time particles can spend interacting the underlying turbulence. We find that when particle inertia is small, the particle relative velocities and radial distribution functions (RDFs) are almost entirely insensitive to the flow Reynolds number, both with and without gravity. The relative velocities and RDFs for larger particles tend to weakly depend on the Reynolds number and to strongly depend on the degree of gravity. While non-local, path-history interactions significantly affect the relative velocities of moderate and large particles without gravity, these interactions are suppressed by gravity, reducing the relative velocities. We provide a physical explanation for the trends in the relative velocities with Reynolds number and gravity, and use the model of [198] to understand and predict how the trends in the relative velocities will affect the RDFs. The collision kernels for particles representative of those in atmospheric clouds are generally seen to be independent of Reynolds number, both with and without gravity, indicating relatively low Reynolds-number simulations are able to capture much of the physics responsible for droplet collisions in clouds. We conclude by discussing practical implications of this work for the cloud physics and turbulence communities and suggesting areas for future research.

Book Modeling Approaches and Computational Methods for Particle laden Turbulent Flows

Download or read book Modeling Approaches and Computational Methods for Particle laden Turbulent Flows written by Shankar Subramaniam and published by Academic Press. This book was released on 2022-10-20 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method. Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers. Provides a comprehensive introduction to the phenomena of particle laden turbulent flow Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation Describes a wide range of innovative applications of these models

Book Homogeneous Turbulence Dynamics

Download or read book Homogeneous Turbulence Dynamics written by Pierre Sagaut and published by Springer. This book was released on 2018-03-23 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.

Book Studies in Turbulence

    Book Details:
  • Author : Thomas B. Gatski
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461227925
  • Pages : 609 pages

Download or read book Studies in Turbulence written by Thomas B. Gatski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains contributions by former students, colleagues and friends of Professor John L. Lumley, on the occasion of his 60th birthday, in recognition of his enormous impact on the advancement of turbulence research. A variety of experimental, computational and theoretical topics, including turbulence modeling, direct numerical simulations, compressible turbulence, turbulent shear flows, coherent structures and the Proper Orthogonal Decomposition are contained herein. The diversity and scope of these contributions are further acknowledgment of John Lumley's wide ranging influence in the field of turbulence. The large number of contributions by the authors, many of whom were participants in The Lumley Symposium: Recent Developments in Turbulence (held at ICASE, NASA Langley Research Center on November 12 & 13, 1990), has presented us with the unique opportu nity to select a few numerical and theoretical papers for inclusion in the journal Theoretical and Computational Fluid Dynamics for which Professor Lumley serves as Editor. Extended Abstracts of these pa pers are included in this volume and are appropriately marked. The special issue of TCFD will appear this year and will serve as an additional tribute to John Lumley. As is usually the case, the efforts of others have significantly eased our tasks. We would like to express our deep appreciation to Drs. R.

Book Turbulent Flow Computation

    Book Details:
  • Author : D. Drikakis
  • Publisher : Springer Science & Business Media
  • Release : 2006-04-11
  • ISBN : 0306484218
  • Pages : 390 pages

Download or read book Turbulent Flow Computation written by D. Drikakis and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: In various branches of fluid mechanics, our understanding is inhibited by the presence of turbulence. Although many experimental and theoretical studies have significantly helped to increase our physical understanding, a comp- hensive and predictive theory of turbulent flows has not yet been established. Therefore, the prediction of turbulent flow relies heavily on simulation stra- gies. The development of reliable methods for turbulent flow computation will have a significant impact on a variety of technological advancements. These range from aircraft and car design, to turbomachinery, combustors, and process engineering. Moreover, simulation approaches are important in materials - sign, prediction of biologically relevant flows, and also significantly contribute to the understanding of environmental processes including weather and climate forecasting. The material that is compiled in this book presents a coherent account of contemporary computational approaches for turbulent flows. It aims to p- vide the reader with information about the current state of the art as well as to stimulate directions for future research and development. The book puts part- ular emphasis on computational methods for incompressible and compressible turbulent flows as well as on methods for analysing and quantifying nume- cal errors in turbulent flow computations. In addition, it presents turbulence modelling approaches in the context of large eddy simulation, and unfolds the challenges in the field of simulations for multiphase flows and computational fluid dynamics (CFD) of engineering flows in complex geometries. Apart from reviewing main research developments, new material is also included in many of the chapters.

Book Particles in Turbulent Flows

Download or read book Particles in Turbulent Flows written by Leonid I. Zaichik and published by John Wiley & Sons. This book was released on 2008-12-04 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.

Book Investigation of Inertial Particle Phenomena in Homogeneous Isotropic Turbulence

Download or read book Investigation of Inertial Particle Phenomena in Homogeneous Isotropic Turbulence written by Juan Pablo de Lima Costa Salazar and published by . This book was released on 2010 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Flows

Download or read book Turbulent Flows written by Jean Piquet and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.

Book Collective Dynamics of Particles

Download or read book Collective Dynamics of Particles written by Cristian Marchioli and published by Springer. This book was released on 2017-02-21 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.

Book Progress in Turbulence II

Download or read book Progress in Turbulence II written by Martin Oberlack and published by Springer Science & Business Media. This book was released on 2007-06-03 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides turbulence there is hardly any other scientific topic which has been considered as a prominent scientific challenge for such a long time. The special interest in turbulence is not only based on it being a difficult scientific problem but also on its meaning in the technical world and our daily life. This carefully edited book comprises recent basic research as well as research related to the applications of turbulence. Therefore, both leading engineers and physicists working in the field of turbulence were invited to the iTi Conference on Turbulence held in Bad Zwischenahn, Gemany 25th - 28th of September 2005. Discussed topics include, for example, scaling laws and intermittency, thermal convection, boundary layers at large Reynolds numbers, isotropic turbulence, stochastic processes, passive and active scalars, coherent structures, numerical simulations, and related subjects.

Book Dynamics of Non Spherical Particles in Turbulence

Download or read book Dynamics of Non Spherical Particles in Turbulence written by Luis Blay Esteban and published by Springer. This book was released on 2019-08-13 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the dynamics of 2D objects moving through turbulent fluids. It examines the decay of turbulence over extended time scales, and compares the dynamics of non-spherical particles moving through still and turbulent fluids. The book begins with an introduction to the project, its aims, and its relevance for industrial applications. It then discusses the movement of planar particles in quiescent fluid, and presents the numerous methodologies used to measure it. The book also presents a detailed analysis of the falling style of irregular particles, which makes it possible to estimate particle trajectory and wake morphology based on frontal geometry. In turn, the book provides the results of an analysis of physically constrained decaying turbulence in a laboratory setting. These results suggest that large-scale cut-off in numerical simulations can result in severe bias in the computed turbulent kinetic energy for long waiting times. Combining the main text with a wealth of figures and sketches throughout, the book offers an accessible guide for all engineering students with a basic grasp of fluid mechanics, while the key findings will also be of interest to senior researchers.

Book Numerical Experiments in Homogeneous Turbulence

Download or read book Numerical Experiments in Homogeneous Turbulence written by Robert Sugden Rogallo and published by . This book was released on 1981 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical Approaches to Turbulence

Download or read book Theoretical Approaches to Turbulence written by D.L. Dwoyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence is the lIDst natural nDde of fluid lIDtion, and has been the subject of scientific study for all Dst a century. During this period, various ideas and techniques have evolved to nDdel turbulence. Following Saffman, these theoretical approaches can be broadly divided into four overlapping categories -- (1) analytical lIDdelling, (2) physical lIDdelling, (3) phenomenologicalllDdelling, and (4) nurerical lIDdelling. With the purpose of stmtnarizing our =ent understanding of these theoretical approaches to turbulence, recognized leaders (fluid dynamicists, mathematicians and physicists) in the field were invited to participate in a formal workshop during October 10-12, 1984, sponsored by The Institute for CooIputer Applications in Science and Engineering and NASA Langley Research Center. Kraiciman, McCcxnb, Pouquet and Spiegel represented the category of analytical nDdelling, while Landahl and Saffman represented physical lIDdelling. The contributions of Latmder and Spalding were in the category of phenanenological lIDdelling, and those of Ferziger and Reynolds in the area of nurericalllDdelling. Aref, Cholet, Lumley, Moin, Pope and Temam served on the panel discussions. With the care and cooperation of the participants, the workshop achieved its purpose, and we believe that its proceedings published in this vol\. llre has lasting scientific value. The tone of the workshop was set by two introductory talks by Bushnell and ChaImm. Buslmell presented the engineering viewpoint while Chapman reviewed from a historical perspective developments in the study of turbulence. The remaining talks dealt with specific aspects of the theoretical approaches to fluid turbulence.

Book Turbulence in Fluids

Download or read book Turbulence in Fluids written by Marcel Lesieur and published by Springer. This book was released on 2009-09-03 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its fully updated fourth edition, this leading text in its field is an exhaustive monograph on turbulence in fluids in its theoretical and applied aspects. The authors examine a number of advanced developments using mathematical spectral methods, direct-numerical simulations, and large-eddy simulations. The book remains a hugely important contribution to the literature on a topic of great importance for engineering and environmental applications, and presents a very detailed presentation of the field.

Book Navier Stokes Turbulence

    Book Details:
  • Author : Wolfgang Kollmann
  • Publisher : Springer Nature
  • Release : 2019-11-21
  • ISBN : 3030318699
  • Pages : 744 pages

Download or read book Navier Stokes Turbulence written by Wolfgang Kollmann and published by Springer Nature. This book was released on 2019-11-21 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a core text for graduate courses in advanced fluid mechanics and applied science. It consists of two parts. The first provides an introduction and general theory of fully developed turbulence, where treatment of turbulence is based on the linear functional equation derived by E. Hopf governing the characteristic functional that determines the statistical properties of a turbulent flow. In this section, Professor Kollmann explains how the theory is built on divergence free Schauder bases for the phase space of the turbulent flow and the space of argument vector fields for the characteristic functional. Subsequent chapters are devoted to mapping methods, homogeneous turbulence based upon the hypotheses of Kolmogorov and Onsager, intermittency, structural features of turbulent shear flows and their recognition.