Download or read book Computational Geometry of Positive Definite Quadratic Forms written by Achill Schurmann and published by American Mathematical Soc.. This book was released on 2009 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices." "Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights."--BOOK JACKET.
Download or read book Geometry and Analysis of Automorphic Forms of Several Variables written by Yoshinori Hamahata and published by World Scientific. This book was released on 2012 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributions of principal speakers of the symposium on geometry and analysis of automorphic forms of several variables, held in September 2009 at Tokyo, Japan, in honor of Takayuki Oda''s 60th birthday. It presents both research and survey articles in the fields that are the main themes of his work. The volume may serve as a guide to developing areas as well as a resource for researchers who seek a broader view and for students who are beginning to explore automorphic form.
Download or read book Surveys on Discrete and Computational Geometry written by Jacob E. Goodman and published by American Mathematical Soc.. This book was released on 2008 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains nineteen survey papers describing the state of current research in discrete and computational geometry as well as a set of open problems presented at the 2006 AMS-IMS-SIAM Summer Research Conference Discrete and Computational Geometry--Twenty Years Later, held in Snowbird, Utah, in June 2006. Topics surveyed include metric graph theory, lattice polytopes, the combinatorial complexity of unions of geometric objects, line and pseudoline arrangements, algorithmic semialgebraic geometry, persistent homology, unfolding polyhedra, pseudo-triangulations, nonlinear computational geometry, $k$-sets, and the computational complexity of convex bodies.
Download or read book Handbook of Discrete and Computational Geometry Second Edition written by Csaba D. Toth and published by CRC Press. This book was released on 2004-04-13 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies
Download or read book Diophantine Methods Lattices and Arithmetic Theory of Quadratic Forms written by Wai Kiu Chan and published by American Mathematical Soc.. This book was released on 2013 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
Download or read book Computations with Modular Forms written by Gebhard Böckle and published by Springer Science & Business Media. This book was released on 2014-01-23 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.
Download or read book Integer Programming and Combinatorial Optimization written by Jens Vygen and published by Springer Nature. This book was released on with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Discrete Geometry and Optimization written by Károly Bezdek and published by Springer Science & Business Media. This book was released on 2013-07-09 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Tóth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems.
Download or read book Convexity from the Geometric Point of View written by Vitor Balestro and published by Springer Nature. This book was released on with total page 1195 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Geometric Constraint Systems Principles written by Meera Sitharam and published by CRC Press. This book was released on 2018-07-20 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.
Download or read book Real Solutions to Equations from Geometry written by Frank Sottile and published by American Mathematical Soc.. This book was released on 2011-08-31 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding, finding, or even deciding on the existence of real solutions to a system of equations is a difficult problem with many applications outside of mathematics. While it is hopeless to expect much in general, we know a surprising amount about these questions for systems which possess additional structure often coming from geometry. This book focuses on equations from toric varieties and Grassmannians. Not only is much known about these, but such equations are common in applications. There are three main themes: upper bounds on the number of real solutions, lower bounds on the number of real solutions, and geometric problems that can have all solutions be real. The book begins with an overview, giving background on real solutions to univariate polynomials and the geometry of sparse polynomial systems. The first half of the book concludes with fewnomial upper bounds and with lower bounds to sparse polynomial systems. The second half of the book begins by sampling some geometric problems for which all solutions can be real, before devoting the last five chapters to the Shapiro Conjecture, in which the relevant polynomial systems have only real solutions.
Download or read book Handbook of Discrete and Computational Geometry written by Csaba D. Toth and published by CRC Press. This book was released on 2017-11-22 with total page 2354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Download or read book Koszul Cohomology and Algebraic Geometry written by Marian Aprodu and published by American Mathematical Soc.. This book was released on 2010 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The systematic use of Koszul cohomology computations in algebraic geometry can be traced back to the foundational work of Mark Green in the 1980s. Green connected classical results concerning the ideal of a projective variety with vanishing theorems for Koszul cohomology. Green and Lazarsfeld also stated two conjectures that relate the Koszul cohomology of algebraic curves with the existence of special divisors on the curve. These conjectures became an important guideline for future research. In the intervening years, there has been a growing interaction between Koszul cohomology and algebraic geometry. Green and Voisin applied Koszul cohomology to a number of Hodge-theoretic problems, with remarkable success. More recently, Voisin achieved a breakthrough by proving Green's conjecture for general curves; soon afterwards, the Green-Lazarsfeld conjecture for general curves was proved as well. This book is primarily concerned with applications of Koszul cohomology to algebraic geometry, with an emphasis on syzygies of complex projective curves. The authors' main goal is to present Voisin's proof of the generic Green conjecture, and subsequent refinements. They discuss the geometric aspects of the theory and a number of concrete applications of Koszul cohomology to problems in algebraic geometry, including applications to Hodge theory and to the geometry of the moduli space of curves.
Download or read book Combinatorial Algebraic Geometry written by Gregory G. Smith and published by Springer. This book was released on 2017-11-17 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.
Download or read book Geometry Intuitive Discrete and Convex written by Imre Bárány and published by Springer. This book was released on 2015-04-09 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is a collection of a dozen survey articles, dedicated to the memory of the famous Hungarian geometer, László Fejes Tóth, on the 99th anniversary of his birth. Each article reviews recent progress in an important field in intuitive, discrete, and convex geometry. The mathematical work and perspectives of all editors and most contributors of this volume were deeply influenced by László Fejes Tóth.
Download or read book Public Key Cryptography PKC 2023 written by Alexandra Boldyreva and published by Springer Nature. This book was released on 2023-05-01 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume proceedings set LNCS 13940 and 13941 constitutes the refereed proceedings of the 26th IACR International Conference on Practice and Theory of Public Key Cryptography, PKC 2023, which took place in March 2023 in Atlanta, GA, USA. The 49 papers included in these proceedings were carefully reviewed and selected from 183 submissions. They focus on all aspects of public-key cryptography, covering Post-Quantum Cryptography, Key Exchange and Messaging, Encryption, Homomorphic Cryptography and other topics.
Download or read book Geometric Science of Information written by Frank Nielsen and published by Springer. This book was released on 2017-10-30 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on Geometric Science of Information, GSI 2017, held in Paris, France, in November 2017. The 101 full papers presented were carefully reviewed and selected from 113 submissions and are organized into the following subjects: statistics on non-linear data; shape space; optimal transport and applications: image processing; optimal transport and applications: signal processing; statistical manifold and hessian information geometry; monotone embedding in information geometry; information structure in neuroscience; geometric robotics and tracking; geometric mechanics and robotics; stochastic geometric mechanics and Lie group thermodynamics; probability on Riemannian manifolds; divergence geometry; non-parametric information geometry; optimization on manifold; computational information geometry; probability density estimation; session geometry of tensor-valued data; geodesic methods with constraints; applications of distance geometry.