EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Geomechanics with Special Reference to Earthquake Engineering

Download or read book Computational Geomechanics with Special Reference to Earthquake Engineering written by O. C. Zienkiewicz and published by . This book was released on 1999-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Geomechanics: introduces the full theory of dynamic and static behaviour of porous media and shows how computation can predict the deformations of a structure, subject to an earthquake or consolidation. introduces the use of numerical, finite element procedures for soil and rock mechanics problems which has increased rapidly throughout the last decade. provides a comprehensive survey of major, constitutive models, which can simulate soil behaviour rationally. explains practical procedures based on computational experience for real projects with particular emphasis on earthquake engineering. Static problems which occupy a particular area of dynamics can also be solved by identical methods, making the book relevant to all researchers and engineers concerned with geomechanics. Earthquake Engineering is stressed throughout as it is in this field that the most difficult examples arise; however, other applications are also noted.

Book Computational Geomechanics with Special Reference to Earthquake Engineering

Download or read book Computational Geomechanics with Special Reference to Earthquake Engineering written by O. C. Zienkiewicz and published by . This book was released on 1999-05-04 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Geomechanics: introduces the full theory of dynamic and static behaviour of porous media and shows how computation can predict the deformations of a structure, subject to an earthquake or consolidation. introduces the use of numerical, finite element procedures for soil and rock mechanics problems which has increased rapidly throughout the last decade. provides a comprehensive survey of major, constitutive models, which can simulate soil behaviour rationally. explains practical procedures based on computational experience for real projects with particular emphasis on earthquake engineering. Static problems which occupy a particular area of dynamics can also be solved by identical methods, making the book relevant to all researchers and engineers concerned with geomechanics. Earthquake Engineering is stressed throughout as it is in this field that the most difficult examples arise; however, other applications are also noted.

Book Computational Geomechanics

Download or read book Computational Geomechanics written by Andrew H. C. Chan and published by John Wiley & Sons. This book was released on 2022-03-28 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPUTATIONAL GEOMECHANICS The new edition of the first book to cover the computational dynamic aspects of geomechanics, now including more practical applications and up-to-date coverage of current research in the field Advances in computational geomechanics have dramatically improved understanding of the behavior of soils and the ability of engineers to design increasingly sophisticated constructions in the ground. When Professor Olek Zienkiewicz began the application of numerical approaches to solid dynamics at Swansea University, it became evident that realistic prediction of the behavior of soil masses could only be achieved if the total stress approaches were abandoned. Computational Geomechanics introduces the theory and application of Zienkiewicz’s computational approaches that remain the basis for work in the area of saturated and unsaturated soil to this day. Written by past students and colleagues of Professor Zienkiewicz, this extended Second Edition provides formulations for a broader range of problems, including failure load under static loading, saturated and unsaturated consolidation, hydraulic fracturing, and liquefaction of soil under earthquake loading. The internationally-recognized team of authors incorporates current computer technologies and new developments in the field, particularly in the area of partial saturation, as they guide readers on how to properly apply the formulation in their work. This one-of-a-kind volume: Explains the Biot-Zienkiewicz formulation for saturated and unsaturated soil Covers multiple applications to static and dynamic problems for saturated and unsaturated soil in areas such as earthquake engineering and fracturing of soils and rocks Features a completely new chapter on fast catastrophic landslides using depth integrated equations and smoothed particle hydrodynamics with applications Presents the theory of porous media in the saturated and unsaturated states to establish the foundation of the problem of soil mechanics Provides a quantitative description of soil behavior including simple plasticity models, generalized plasticity, and critical state soil mechanics Includes numerous questions, problems, hands-on experiments, applications to other situations, and example code for GeHoMadrid Computational Geomechanics: Theory and Applications, Second Edition is an ideal textbook for specialist and general geotechnical postgraduate courses, and a must-have reference for researchers in geomechanics and geotechnical engineering, for software developers and users of geotechnical finite element software, and for geotechnical analysts and engineers making use of the numerical results obtained from the Biot-Zienkiewicz formulation.

Book Analytical Methods in Petroleum Upstream Applications

Download or read book Analytical Methods in Petroleum Upstream Applications written by Cesar Ovalles and published by CRC Press. This book was released on 2015-04-02 with total page 2054 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effective measurement of the composition and properties of petroleum is essential for its exploration, production, and refining; however, new technologies and methodologies are not adequately documented in much of the current literature. Analytical Methods in Petroleum Upstream Applications explores advances in the analytical methods and instrumentation that allow more accurate determination of the components, classes of compounds, properties, and features of petroleum and its fractions. Recognized experts explore a host of topics, including: A petroleum molecular composition continuity model as a context for other analytical measurements A modern modular sampling system for use in the lab or the process area to collect and control samples for subsequent analysis The importance of oil-in-water measurements and monitoring The chemical and physical properties of heavy oils, their fractions, and products from their upgrading Analytical measurements using gas chromatography and nuclear magnetic resonance (NMR) applications Asphaltene and heavy ends analysis Chemometrics and modeling approaches for understanding petroleum composition and properties to improve upstream, midstream, and downstream operations Due to the renaissance of gas and oil production in North America, interest has grown in analytical methods for a wide range of applications. The understanding provided in this text is designed to help chemists, geologists, and chemical and petroleum engineers make more accurate estimates of the crude value to specific refinery configurations, providing insight into optimum development and extraction schemes.

Book Computational Plasticity

Download or read book Computational Plasticity written by Mao-Hong Yu and published by Springer Science & Business Media. This book was released on 2012-12-02 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Computational Plasticity with Emphasis on the Application of the Unified Strength Theory” explores a new and important branch of computational mechanics and is the third book in a plasticity series published by Springer. The other two are: Generalized Plasticity, Springer: Berlin, 2006; and Structural Plasticity, Springer and Zhejiang University Press: Hangzhou, 2009. This monograph describes the unified strength theory and associated flow rule, the implementation of these basic theories in computational programs, and shows how a series of results can be obtained by using them. The unified strength theory has been implemented in several special nonlinear finite-element programs and commercial Finite Element Codes by individual users and corporations. Many new and interesting findings for beams, plates, underground caves, excavations, strip foundations, circular foundations, slop, underground structures of hydraulic power stations, pumped-storage power stations, underground mining, high-velocity penetration of concrete structures, ancient structures, and rocket components, along with relevant computational results, are presented. This book is intended for graduate students, researchers and engineers working in solid mechanics, engineering and materials science. The theories and methods provided in this book can also be used for other computer codes and different structures. More results can be obtained, which put the potential strength of the material to better use, thus offering material-saving and energy-saving solutions. Mao-Hong Yu is a professor at the Department of Civil Engineering at Xi'an Jiaotong University, Xi'an, China.

Book Poromechanics

Download or read book Poromechanics written by J.F. Thimus and published by CRC Press. This book was released on 2020-12-17 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text features 105 papers dealing with the fundamentals and the applications of poromechanics from the Biot conference of 1998, held in Louvain-la-Neuve. Topics include: wave propogation; numerical modelling; identification of poromechanical parameters; and constitutive modelling.

Book Computational Geomechanics

Download or read book Computational Geomechanics written by Andrew H. C. Chan and published by John Wiley & Sons. This book was released on 2022-04-04 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPUTATIONAL GEOMECHANICS The new edition of the first book to cover the computational dynamic aspects of geomechanics, now including more practical applications and up-to-date coverage of current research in the field Advances in computational geomechanics have dramatically improved understanding of the behavior of soils and the ability of engineers to design increasingly sophisticated constructions in the ground. When Professor Olek Zienkiewicz began the application of numerical approaches to solid dynamics at Swansea University, it became evident that realistic prediction of the behavior of soil masses could only be achieved if the total stress approaches were abandoned. Computational Geomechanics introduces the theory and application of Zienkiewicz’s computational approaches that remain the basis for work in the area of saturated and unsaturated soil to this day. Written by past students and colleagues of Professor Zienkiewicz, this extended Second Edition provides formulations for a broader range of problems, including failure load under static loading, saturated and unsaturated consolidation, hydraulic fracturing, and liquefaction of soil under earthquake loading. The internationally-recognized team of authors incorporates current computer technologies and new developments in the field, particularly in the area of partial saturation, as they guide readers on how to properly apply the formulation in their work. This one-of-a-kind volume: Explains the Biot-Zienkiewicz formulation for saturated and unsaturated soil Covers multiple applications to static and dynamic problems for saturated and unsaturated soil in areas such as earthquake engineering and fracturing of soils and rocks Features a completely new chapter on fast catastrophic landslides using depth integrated equations and smoothed particle hydrodynamics with applications Presents the theory of porous media in the saturated and unsaturated states to establish the foundation of the problem of soil mechanics Provides a quantitative description of soil behavior including simple plasticity models, generalized plasticity, and critical state soil mechanics Includes numerous questions, problems, hands-on experiments, applications to other situations, and example code for GeHoMadrid Computational Geomechanics: Theory and Applications, Second Edition is an ideal textbook for specialist and general geotechnical postgraduate courses, and a must-have reference for researchers in geomechanics and geotechnical engineering, for software developers and users of geotechnical finite element software, and for geotechnical analysts and engineers making use of the numerical results obtained from the Biot-Zienkiewicz formulation.

Book Numerical Methods in Geotechnical Engineering IX

Download or read book Numerical Methods in Geotechnical Engineering IX written by António S. Cardoso and published by CRC Press. This book was released on 2018-06-19 with total page 1656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods in Geotechnical Engineering IX contains 204 technical and scientific papers presented at the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE2018, Porto, Portugal, 25—27 June 2018). The papers cover a wide range of topics in the field of computational geotechnics, providing an overview of recent developments on scientific achievements, innovations and engineering applications related to or employing numerical methods. They deal with subjects from emerging research to engineering practice, and are grouped under the following themes: Constitutive modelling and numerical implementation Finite element, discrete element and other numerical methods. Coupling of diverse methods Reliability and probability analysis Large deformation – large strain analysis Artificial intelligence and neural networks Ground flow, thermal and coupled analysis Earthquake engineering, soil dynamics and soil-structure interactions Rock mechanics Application of numerical methods in the context of the Eurocodes Shallow and deep foundations Slopes and cuts Supported excavations and retaining walls Embankments and dams Tunnels and caverns (and pipelines) Ground improvement and reinforcement Offshore geotechnical engineering Propagation of vibrations Following the objectives of previous eight thematic conferences, (1986 Stuttgart, Germany; 1990 Santander, Spain; 1994 Manchester, United Kingdom; 1998 Udine, Italy; 2002 Paris, France; 2006 Graz, Austria; 2010 Trondheim, Norway; 2014 Delft, The Netherlands), Numerical Methods in Geotechnical Engineering IX updates the state-of-the-art regarding the application of numerical methods in geotechnics, both in a scientific perspective and in what concerns its application for solving practical boundary value problems. The book will be much of interest to engineers, academics and professionals involved or interested in Geotechnical Engineering.

Book Numerical Models in Geomechanics

Download or read book Numerical Models in Geomechanics written by G.N. Pande and published by CRC Press. This book was released on 2002-01-01 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume reflect the current research and advances made in the application of numerical methods in geotechnical engineering. Topics include: instabilities in soil behaviour; environmental geomechanics; and hydro-mechanical coupling in problems of engineering.

Book Geotechnical Aspects of Underground Construction in Soft Ground

Download or read book Geotechnical Aspects of Underground Construction in Soft Ground written by Arsenio Negro and published by CRC Press. This book was released on 2017-11-23 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geotechnical Aspects of Underground Construction in Soft Ground comprises the second Fujita lecture, three keynote lectures and the regular papers presented at the Ninth International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (IS - Sao Paulo 2017, Sao Paulo, Brazil, 4-6 April 2017). The Symposium was organized by the Brazilian Tunnelling Committee (CBT) of the Brazilian Geotechnical Society (ABMS), under the auspices of the Technical Committee TC204 of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The contributions cover a wide range of topics: - Deep Excavations - Interaction with Adjacent Structures - Mechanized Excavations - Sequential Excavations - Physical Modelling and Field Tests - Case Histories Geotechnical Aspects of Underground Construction in Soft Ground is particularly aimed at academics and professionals interested or involved in geotechnical and underground engineering. Similarly to previous editions, the contributions are a valuable source of reference on the current practice on the analysis, design and construction of tunnels, deep excavations and large underground structures, with particular emphasis on the development, effects and control of ground movements, their interaction with existing structures, mitigation measures and risk management. IS - Sao Paulo 2017 is the latest in a series of ISSMGE’s TC204 symposia, which began in New Delhi (1993), followed by symposia in London (1996), Tokyo (1999), Toulouse (2002), Amsterdam (2005), Shanghai (2008), Rome (2011) and Seoul (2014).

Book The Finite Element Method  Its Basis and Fundamentals

Download or read book The Finite Element Method Its Basis and Fundamentals written by O. C. Zienkiewicz and published by Elsevier. This book was released on 2005-05-26 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Sixth Edition of this influential best-selling book delivers the most up-to-date and comprehensive text and reference yet on the basis of the finite element method (FEM) for all engineers and mathematicians. Since the appearance of the first edition 38 years ago, The Finite Element Method provides arguably the most authoritative introductory text to the method, covering the latest developments and approaches in this dynamic subject, and is amply supplemented by exercises, worked solutions and computer algorithms.• The classic FEM text, written by the subject's leading authors • Enhancements include more worked examples and exercises• With a new chapter on automatic mesh generation and added materials on shape function development and the use of higher order elements in solving elasticity and field problemsActive research has shaped The Finite Element Method into the pre-eminent tool for the modelling of physical systems. It maintains the comprehensive style of earlier editions, while presenting the systematic development for the solution of problems modelled by linear differential equations. Together with the second and third self-contained volumes (0750663219 and 0750663227), The Finite Element Method Set (0750664312) provides a formidable resource covering the theory and the application of FEM, including the basis of the method, its application to advanced solid and structural mechanics and to computational fluid dynamics. - The classic introduction to the finite element method, by two of the subject's leading authors - Any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in this key text

Book Advanced Materials and Techniques for Structural Monitoring  Analysis and Control

Download or read book Advanced Materials and Techniques for Structural Monitoring Analysis and Control written by Chun-Xu Qu and published by Frontiers Media SA. This book was released on 2024-06-18 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assessing the service status and maintaining the safety of existing structures are critical to the sustainable operations of various engineering and cross-industry, including civil infrastructures, railways and machinery. Static and dynamic structural characteristics play a key role in the global deterioration assessment of the structural performance, which has enabled structural monitoring and analysis technology to become an active focus in the engineering area. Meanwhile, structural control has been widely used in modern structural engineering. Structural control devices are implemented to enhance deteriorating structures and mitigate natural disasters. Through advanced structural control technology, the structural responses can be controlled. These structural control techniques include passive, active or semi-active reverse forces, which aim to modify structural stiffness, mass and damping with minimal control force. Structural control, monitoring and analysis complement each other, ensuring the safety of the structure to the greatest extent.

Book Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology

Download or read book Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology written by Herbert F. Wang and published by Princeton University Press. This book was released on 2017-02-15 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.

Book Environmental Geomechanics

Download or read book Environmental Geomechanics written by Laurent Vulliet and published by EPFL Press. This book was released on 2002-01-01 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Computing for Geotechnical Engineering

Download or read book Modeling and Computing for Geotechnical Engineering written by M.S. Rahman and published by CRC Press. This book was released on 2018-09-03 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.

Book Numerical Methods in Geotechnical Engineering

Download or read book Numerical Methods in Geotechnical Engineering written by Michael A. Hicks and published by CRC Press. This book was released on 2014-05-29 with total page 1343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods in Geotechnical Engineering contains the proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2014, Delft, The Netherlands, 18-20 June 2014). It is the eighth in a series of conferences organised by the European Regional Technical Committee ERTC7 under the auspices of the International

Book IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials

Download or read book IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials written by Wolfgang Ehlers and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, continuum mechanics of porous materials has achieved great attention, since it allows for the consideration of the volumetrically coupled behaviour of the solid matrix deformation and the pore-fluid flow. Naturally, applications of porous media models range from civil and environmental engineering, where, e. g. , geote- nical problems like the consolidation problem are of great interest, via mechanical engineering, where, e. g. , the description of sinter materials or polymeric and metallic foams is a typical problem, to chemical and biomechanical engineering, where, e. g. , the complex structure of l- ing tissues is studied. Although these applications are principally very different, they basically fall into the category of multiphase materials, which can be described, on the macroscale, within the framework of the well-founded Theory of Porous Media (TPM). With the increasing power of computer hardware together with the rapidly decreasing computational costs, numerical solutions of complex coupled problems became possible and have been seriously investigated. However, since the quality of the numerical solutions strongly depends on the quality of the underlying physical model together with the experimental and mathematical possibilities to successfully determine realistic material parameters, a successful treatment of porous materials requires a joint consideration of continuum mechanics, experimental mechanics and numerical methods. In addition, micromechanical - vestigations and homogenization techniques are very helpful to increase the phenomenological understanding of such media.