EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Laser Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor

Download or read book Laser Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: OH and fuel planar laser-induced fluorescence (PLIF) is used qualitatively in this study to observe the flame structure resultant from different fuel injector dome configurations within the 3-cup sector combustor test rig. The fluorescence images are compared with some computational fluid dynamics (CFD) results. Interferences in obtaining OH fluorescence signals due to the emission of other species are assessed. NO PLIF images are presented and compared to gas analysis results. The comparison shows that PLIF NO can be an excellent method for measuring NO in the flame. Additionally, we present flow visualization of the molecular species C2.Hicks, Yolanda R. and Locke, Randy J. and Anderson, Robert C.Glenn Research CenterCOMPUTATIONAL FLUID DYNAMICS; FLOW DISTRIBUTION; LASER INDUCED FLUORESCENCE; PREMIXING; COMBUSTION CHAMBERS; PREVAPORIZATION; GAS ANALYSIS; FUEL INJECTION; DETECTORS; CCD CAMERAS; LASER BEAMS; HYDROXIDES; NITROGEN OXIDES; IMAGE ANALYSIS; LASER APPLICATIONS

Book Tracer based Planar Laser induced Fluorescence Diagnostics

Download or read book Tracer based Planar Laser induced Fluorescence Diagnostics written by Brian Ho-yin Cheung and published by Stanford University. This book was released on 2011 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two advances to tracer-based planar laser-induced fluorescence (PLIF) diagnostics are presented in this work. The first improvement is the development of a 3-pentanone fluorescence quantum yield (FQY) database and model for a wide range of conditions in support of quantitative PLIF diagnostics. In addition, this work presents a sensitive, time-resolved tracer-based PLIF diagnostic, accomplished by using a continuous-wave (CW) laser with the high-FQY tracer toluene. Because of its ease of use and desirable photophysical properties, PLIF diagnostics using 3-pentanone as a tracer are common, particularly for internal combustion engine (ICE) diagnostics. Thus, there is a need for 3-pentanone FQY measurements and modeling over a wide range of temperatures, pressures, and excitation wavelengths. For insight into the collisionless process in the FQY model, measurements were made in 3-pentanone vapor at low-pressures across a range of temperatures using a flowing cell. Laser excitation with 248, 266, 277, 308 nm wavelengths were utilized, and Rayleigh scattering of the laser beam was used to calibrate the optical efficiency of the collection optics and detector. This low-pressure data allows calculation of the 3-pentanone fluorescence rate and non-radiative de-excitation rate in the fluorescence model. The vibrational relaxation cascade parameter for 3-pentanone collisions was also determined. Measurements of 3-pentanone FQY were also made over a range of temperatures and pressures relevant to diagnostic applications, and, in particular, combined high-temperature and high-pressure conditions applicable to internal combustion engines (ICE). These data were collected in a custom-built optical cell capable of simultaneous high-pressure and high-temperature conditions. The behavior of the FQY in nitrogen for temperatures up to 745 K and in air up to 570 K was examined for pressures from 1 to 25 bar. These data were used to further optimize the parameters in the FQY model representing collisional processes. The large quantity of data with 308 nm excitation allowed optimization of the nitrogen quenching rate, and data in air were used to optimize the oxygen quenching rate. These data were also used to optimize the vibrational relaxation parameters for nitrogen and oxygen. The model with the updated parameters is consistent with the data collected in the current work, as well as with fluorescence measurements made in optical ICEs up to 1100 K and 28 bar. Another area of tracer-based PLIF diagnostics development is time-resolved imaging. Because PLIF diagnostics are often performed using pulsed lasers, the time resolution of measurements is limited to the pulse rate of laser. Use of a high-powered visible laser with an off-the-shelf cavity frequency doubler is shown to produce a moderate-power CW beam in the ultraviolet wavelength regime. Application of this CW source to excite toluene, a high-FQY tracer, yields a sensitive, time-resolved tracer-based PLIF diagnostic. Fluctuation detection limits for tracer mole fraction were investigated by applying the diagnostic to an atmospheric temperature and pressure nitrogen jet seeded with 4% toluene, and detection limits of better than 1% of the maximum toluene mole fraction were achieved for detection of fluorescence signal at a point, along a line, and over a plane. The diagnostic was also demonstrated on a turbulent jet for line and planar detection and demonstrated the potential for toluene time-resolved PLIF diagnostics with CW lasers.

Book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows

Download or read book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows written by Ji Hyung Yoo and published by Stanford University. This book was released on 2011 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis was motivated by the need to better understand the temperature distribution in shock tube flows, especially in the near-wall flow regions. Two main ideas in planar laser-induced fluorescence (PLIF) diagnostics are explored in this thesis. The first topic is the development of a single-shot PLIF diagnostic technique for quantitative temperature distribution measurement in shock tube flow fields. PLIF is a non-intrusive, laser-based diagnostic technique capable of instantaneously imaging key flow features, such as temperature, pressure, density, and species concentration, by measuring fluorescence signal intensity from laser-excited tracer species. This study performed a comprehensive comparison of florescence tracers and excitation wavelengths to determine the optimal combination for PLIF imaging in shock tube flow applications. Excitation of toluene at 248nm wavelength was determined to be the optimal strategy due to the resulting high temperature sensitivity and fluorescence signal level, compared to other ketone and aromatic tracers at other excitation wavelengths. Sub-atmospheric toluene fluorescence yield data was measured to augment the existing photophysical data necessary for this diagnostic technique. In addition, a new imaging test section was built to allow PLIF imaging in all regions of the shock tube test section, including immediately adjacent to the side and end walls. The signal-to-noise (SNR) and spatial resolution of the PLIF images were optimized using statistical analysis. Temperature field measurements were made with the PLIF diagnostic technique across normal incident and reflected shocks in the shock tube core flow. The resulting images show uniform spatial distribution, and good agreement with conditions calculated from the normal shock jump equations. Temperature measurement uncertainty is about 3.6% at 800K. The diagnostic was also applied to image flow over a wedge. The resulting images capture all the flow features predicted by numerical simulations. The second topic is the development of a quantitative near-wall diagnostic using tracer-based PLIF imaging. Side wall thermal boundary layers and end wall thermal layers are imaged to study the temperature distribution present under constant pressure conditions. The diagnostic technique validated in the shock tube core flow region was further optimized to improve near-wall image quality. The optimization process considered various wall materials, laser sheet orientations, camera collection angles, and optical components to find the configuration that provides the best images. The resulting images have increased resolution (15[Mu]m) and are able to resolve very thin non-uniform near-wall temperature layers (down to 60[Mu]m from the surface). The temperature field and thickness measurements of near-wall shock tube flows under various shock conditions and test gases showed good agreement with boundary layer theory. To conclude this thesis, new applications and future improvements to the developed PLIF diagnostic technique are discussed. These suggested refinements can provide an even more robust and versatile PLIF imaging technique capable of measuring a wider range of flow conditions near walls.

Book 18th AIAA Aerospace Ground Testing Conference

Download or read book 18th AIAA Aerospace Ground Testing Conference written by and published by . This book was released on 1994 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows

Download or read book Strategies for Planar Laser induced Fluorescence Thermometry in Shock Tube Flows written by Ji Hyung Yoo and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis was motivated by the need to better understand the temperature distribution in shock tube flows, especially in the near-wall flow regions. Two main ideas in planar laser-induced fluorescence (PLIF) diagnostics are explored in this thesis. The first topic is the development of a single-shot PLIF diagnostic technique for quantitative temperature distribution measurement in shock tube flow fields. PLIF is a non-intrusive, laser-based diagnostic technique capable of instantaneously imaging key flow features, such as temperature, pressure, density, and species concentration, by measuring fluorescence signal intensity from laser-excited tracer species. This study performed a comprehensive comparison of florescence tracers and excitation wavelengths to determine the optimal combination for PLIF imaging in shock tube flow applications. Excitation of toluene at 248nm wavelength was determined to be the optimal strategy due to the resulting high temperature sensitivity and fluorescence signal level, compared to other ketone and aromatic tracers at other excitation wavelengths. Sub-atmospheric toluene fluorescence yield data was measured to augment the existing photophysical data necessary for this diagnostic technique. In addition, a new imaging test section was built to allow PLIF imaging in all regions of the shock tube test section, including immediately adjacent to the side and end walls. The signal-to-noise (SNR) and spatial resolution of the PLIF images were optimized using statistical analysis. Temperature field measurements were made with the PLIF diagnostic technique across normal incident and reflected shocks in the shock tube core flow. The resulting images show uniform spatial distribution, and good agreement with conditions calculated from the normal shock jump equations. Temperature measurement uncertainty is about 3.6% at 800K. The diagnostic was also applied to image flow over a wedge. The resulting images capture all the flow features predicted by numerical simulations. The second topic is the development of a quantitative near-wall diagnostic using tracer-based PLIF imaging. Side wall thermal boundary layers and end wall thermal layers are imaged to study the temperature distribution present under constant pressure conditions. The diagnostic technique validated in the shock tube core flow region was further optimized to improve near-wall image quality. The optimization process considered various wall materials, laser sheet orientations, camera collection angles, and optical components to find the configuration that provides the best images. The resulting images have increased resolution (15[Mu]m) and are able to resolve very thin non-uniform near-wall temperature layers (down to 60[Mu]m from the surface). The temperature field and thickness measurements of near-wall shock tube flows under various shock conditions and test gases showed good agreement with boundary layer theory. To conclude this thesis, new applications and future improvements to the developed PLIF diagnostic technique are discussed. These suggested refinements can provide an even more robust and versatile PLIF imaging technique capable of measuring a wider range of flow conditions near walls.

Book Shock Waves   Proceedings Of The 20th International Symposium  In 2 Volumes

Download or read book Shock Waves Proceedings Of The 20th International Symposium In 2 Volumes written by Hans G Hornung and published by World Scientific. This book was released on 1997-01-22 with total page 1740 pages. Available in PDF, EPUB and Kindle. Book excerpt: The symposia take place every two years. They are the forum at which scientists concerned with shock waves present their research. They USE shock waves for chemical kinetics studies, for materials studies, and smashing kidney stones; they STUDY the phenomena associated with flows involving shock waves, such as supersonic flow, explosions, detonations, volcanic eruptions, and, in this symposium, even such with-it topics as impact of Shoemaker-Levy on Jupiter and blast waves in the World Trade Center. They also discover new, bigger and better ways of generating flows at hypervelocity speeds and develop their technological tools further.The international exchange of information is documented in the proceedings volumes, which have become a storehouse of information on the subject, documenting the history of this peculiar branch of science that involves chemists, physicists, engineers, geophysicists, material scientists and biologists.

Book Tracer based Planar Laser induced Fluorescence Diagnostics

Download or read book Tracer based Planar Laser induced Fluorescence Diagnostics written by Brian Ho-yin Cheung and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Two advances to tracer-based planar laser-induced fluorescence (PLIF) diagnostics are presented in this work. The first improvement is the development of a 3-pentanone fluorescence quantum yield (FQY) database and model for a wide range of conditions in support of quantitative PLIF diagnostics. In addition, this work presents a sensitive, time-resolved tracer-based PLIF diagnostic, accomplished by using a continuous-wave (CW) laser with the high-FQY tracer toluene. Because of its ease of use and desirable photophysical properties, PLIF diagnostics using 3-pentanone as a tracer are common, particularly for internal combustion engine (ICE) diagnostics. Thus, there is a need for 3-pentanone FQY measurements and modeling over a wide range of temperatures, pressures, and excitation wavelengths. For insight into the collisionless process in the FQY model, measurements were made in 3-pentanone vapor at low-pressures across a range of temperatures using a flowing cell. Laser excitation with 248, 266, 277, 308 nm wavelengths were utilized, and Rayleigh scattering of the laser beam was used to calibrate the optical efficiency of the collection optics and detector. This low-pressure data allows calculation of the 3-pentanone fluorescence rate and non-radiative de-excitation rate in the fluorescence model. The vibrational relaxation cascade parameter for 3-pentanone collisions was also determined. Measurements of 3-pentanone FQY were also made over a range of temperatures and pressures relevant to diagnostic applications, and, in particular, combined high-temperature and high-pressure conditions applicable to internal combustion engines (ICE). These data were collected in a custom-built optical cell capable of simultaneous high-pressure and high-temperature conditions. The behavior of the FQY in nitrogen for temperatures up to 745 K and in air up to 570 K was examined for pressures from 1 to 25 bar. These data were used to further optimize the parameters in the FQY model representing collisional processes. The large quantity of data with 308 nm excitation allowed optimization of the nitrogen quenching rate, and data in air were used to optimize the oxygen quenching rate. These data were also used to optimize the vibrational relaxation parameters for nitrogen and oxygen. The model with the updated parameters is consistent with the data collected in the current work, as well as with fluorescence measurements made in optical ICEs up to 1100 K and 28 bar. Another area of tracer-based PLIF diagnostics development is time-resolved imaging. Because PLIF diagnostics are often performed using pulsed lasers, the time resolution of measurements is limited to the pulse rate of laser. Use of a high-powered visible laser with an off-the-shelf cavity frequency doubler is shown to produce a moderate-power CW beam in the ultraviolet wavelength regime. Application of this CW source to excite toluene, a high-FQY tracer, yields a sensitive, time-resolved tracer-based PLIF diagnostic. Fluctuation detection limits for tracer mole fraction were investigated by applying the diagnostic to an atmospheric temperature and pressure nitrogen jet seeded with 4% toluene, and detection limits of better than 1% of the maximum toluene mole fraction were achieved for detection of fluorescence signal at a point, along a line, and over a plane. The diagnostic was also demonstrated on a turbulent jet for line and planar detection and demonstrated the potential for toluene time-resolved PLIF diagnostics with CW lasers.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1994 with total page 898 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aerospace America

Download or read book Aerospace America written by and published by . This book was released on 1994 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 30th AIAA Thermophysics Conference

Download or read book 30th AIAA Thermophysics Conference written by and published by . This book was released on 1995 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Finding Guide to AIAA Meeting Papers

Download or read book The Finding Guide to AIAA Meeting Papers written by American Institute of Aeronautics and Astronautics. Technical Information Service and published by . This book was released on 1994 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Oh Planar Laser Induced Fluorescence  Plif  Measurements for the Study of High Pressure Flames  An Evaluation of a New Laser and a New Camera System

Download or read book Oh Planar Laser Induced Fluorescence Plif Measurements for the Study of High Pressure Flames An Evaluation of a New Laser and a New Camera System written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2019-01-19 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planar laser induced fluorescence (PLIF) is used by the Combustion Branch at the NASA Glenn Research Center (NASA Glenn) to assess the characteristics of the flowfield produced by aircraft fuel injectors. To improve and expand the capabilities of the PLIF system new equipment was installed. The new capabilities of the modified PLIF system are assessed by collecting OH PLIF in a methane/air flame produced by a flat flame burner. Specifically, the modifications characterized are the addition of an injection seeder to a Nd: YAG laser pumping an optical parametric oscillator (OPO) and the use of a new camera with an interline CCD. OH fluorescence results using the injection seeded OPO laser are compared to results using a Nd: YAG pumped dye laser with ultraviolet extender (UVX). Best settings of the new camera for maximum detection of PLIF signal are reported for the controller gain and microchannel plate (MCP) bracket pulsing. Results are also reported from tests of the Dual Image Feature (DIF) mode of the new camera which allows image pairs to be acquired in rapid succession. This allows acquisition of a PLIF image and a background signal almost simultaneously. Saturation effects in the new camera were also investigated and are reported. Tedder, Sarah and Hicks, Yolanda Glenn Research Center NASA/TM-2012-217614, E-182

Book Development and Application of Infrared and Tracer based Planar Laser induced Fluorescence Imaging Diagnostics

Download or read book Development and Application of Infrared and Tracer based Planar Laser induced Fluorescence Imaging Diagnostics written by David A. Rothamer and published by . This book was released on 2007 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: IR-PLIF measurements of temperature and pressure are a new application of the technique. Initial IR-PLIF measurements focused on species concentrations of CO and CO2. The strong dependence of IR-PLIF signals on temperature and pressure indicated that IR-PLIF measurements of those quantities are possible.

Book Quantitative Planar Laser Induced Fluorescence Technology

Download or read book Quantitative Planar Laser Induced Fluorescence Technology written by Zhen Yang and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planar laser-induced fluorescence (PLIF) is a highly sensitive and space-time-resolved laser diagnostic technique. It is widely used in the diagnosis of combustion and flow fields to obtain the thermodynamic information of active components and interested molecules in flames. Nowadays, the PLIF technology is developing in two directions: high speed and quantification. In view of the high spatial and temporal resolution characteristics of PLIF technology that other laser diagnostics do not possess, this chapter will focus on the basic principle of laser-induced fluorescence and the current research status of quantitative PLIF technology. In addition, the advantages and disadvantages of various quantitative technologies of component concentration in flames based on laser-induced fluorescence technology are analyzed. At last, the latest works on the quantification of species concentration using planar laser-induced fluorescence in combustion are introduced.