Download or read book Introduction To Computational Earthquake Engineering 2nd Edition written by Muneo Hori and published by World Scientific. This book was released on 2011-05-18 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems.
Download or read book Computational Earthquake Science Part I written by Andrea Donnellan and published by Birkhäuser. This book was released on 2012-12-06 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part I of the book covers microscopic simulations, scaling physics and earthquake generation and cycles. This part also focuses on plate processes and earthquake generation from a macroscopic standpoint.
Download or read book Computational earthquake science 1 written by Andrea Donnellan and published by Springer Science & Business Media. This book was released on 2004-09-27 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part I of the book covers microscopic simulations, scaling physics and earthquake generation and cycles. This part also focuses on plate processes and earthquake generation from a macroscopic standpoint.
Download or read book Intelligent Computational Paradigms in Earthquake Engineering written by Nikos D. Lagaros and published by IGI Global. This book was released on 2007-01-01 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book contains contributions that cover a wide spectrum of very important real-world engineering problems, and explores the implementation of neural networks for the representation of structural responses in earthquake engineering. It assesses the efficiency of seismic design procedures and describes the latest findings in intelligent optimal control systems and their applications in structural engineering"--Provided by publisher.
Download or read book Computational earthquake science 2 written by Andrea Donnellan and published by Springer Science & Business Media. This book was released on 2004-11-22 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications, the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part II of the book embraces dynamic rupture and wave propagation, computational environment and algorithms, data assimilation and understanding, and applications of models to earthquakes. This part also contains articles on the computational approaches and challenges of constructing earthquake models.
Download or read book Computational Earthquake Science Part II written by Andrea Donnellan and published by Birkhäuser. This book was released on 2012-12-06 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications, the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part II of the book embraces dynamic rupture and wave propagation, computational environment and algorithms, data assimilation and understanding, and applications of models to earthquakes. This part also contains articles on the computational approaches and challenges of constructing earthquake models.
Download or read book Living on an Active Earth written by National Research Council and published by National Academies Press. This book was released on 2003-09-22 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Download or read book Computational Earthquake Physics Simulations Analysis and Infrastructure Part I written by Xiang-chu Yin and published by Springer Science & Business Media. This book was released on 2007-12-03 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of a two-part work, this volume focuses on microscopic simulation, scaling physics, dynamic rapture and wave propagation, earthquake generation, cycle and seismic pattern. Topics covered range from numerical and theoretical studies of crack propagation, developments in finite difference methods for modeling faults, long time scale simulation of interacting fault systems, and modeling of crustal deformation through to mantle convection.
Download or read book Theoretical Global Seismology written by F. A. Dahlen and published by Princeton University Press. This book was released on 2020-08-04 with total page 1040 pages. Available in PDF, EPUB and Kindle. Book excerpt: After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.
Download or read book Computational Earthquake Physics Simulations Analysis and Infrastructure written by Xiang-chu Yin and published by Springer Science & Business Media. This book was released on 2007-02-16 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.
Download or read book Computational Seismology written by Heiner Igel and published by Oxford University Press. This book was released on 2017 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.
Download or read book Introduction to Computational Science written by Angela B. Shiflet and published by Princeton University Press. This book was released on 2014-03-30 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors
Download or read book Introduction To Computational Earthquake Engineering Third Edition written by Muneo Hori and published by World Scientific. This book was released on 2018-06-14 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides rigorous foundations of applying modern computational mechanics to earthquake engineering. The scope covers the numerical analysis of earthquake wave propagation processes and the faulting processes, and also presents the most advanced numerical simulations of earthquake hazards and disasters that can take place in an urban area.Two new chapters included are advanced topics on high performance computing and for constructing an analysis model.This is the first book in earthquake engineering that explains the application of modern numerical computation (which includes high performance computing) to various engineering seismology problems.
Download or read book Introduction to Computational Earthquake Engineering written by Muneo Hori and published by World Scientific Publishing Company. This book was released on 2006-02-17 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces new research topics in earthquake engineering through the application of computational mechanics and computer science. The topics covered discuss the evaluation of earthquake hazards such as strong ground motion and faulting through applying advanced numerical analysis methods, useful for estimating earthquake disasters. These methods, based on recent progress in solid continuum mechanics and computational mechanics, are summarized comprehensively for graduate students and researchers in earthquake engineering. The coverage includes stochastic modeling as well as several advanced computational earthquake engineering topics. Contents:Preliminaries:Solid Continuum MechanicsFinite Element MethodStochastic ModelingStrong Ground Motion:The Wave Equation for SolidsAnalysis of Strong Ground MotionSimulation of Strong Ground MotionFaulting:Elasto-Plasticity and Fracture MechanicsAnalysis of FaultingSimulation of FaultingBEM Simulation of FaultingAdvanced Topics:Integrated Earthquake SimulationUnified Visualization of Earthquake SimulationStandardization of Earthquake Resistant DesignAppendices:Earthquake MechanismsAnalytical MechanicsNumerical Techniques of Solving Wave EquationUnified Modeling Language Readership: Graduate students and researchers in earthquake engineering; researchers in computational mechanics and computer science.
Download or read book Computational Science ICCS 2002 written by Peter M.A. Sloot and published by Springer. This book was released on 2003-08-01 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Science is the scienti?c discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems – such as biology, envir- mental and geo-sciences, physics, and chemistry – and synthetic systems such as electronics and ?nancial and economic systems. The discipline is a bridge b- ween ‘classical’ computer science – logic, complexity, architecture, algorithms – mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this ?eld. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): ‘There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential ofcomputational science’. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous s- mulus from the various international programs on advanced computing, e.g.
Download or read book Structural Seismic Design Optimization and Earthquake Engineering Formulations and Applications written by Plevris, Vagelis and published by IGI Global. This book was released on 2012-05-31 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.
Download or read book Preventing Earthquake Disasters The Grand Challenge in Earthquake Engineering written by National Research Council (U.S.). Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES) and published by National Academy Press. This book was released on 2003-11-21 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.