EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Gentle Introduction to Effective Computing in Quantitative Research

Download or read book A Gentle Introduction to Effective Computing in Quantitative Research written by Harry J. Paarsch and published by MIT Press. This book was released on 2016-05-06 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to using modern software effectively in quantitative research in the social and natural sciences. This book offers a practical guide to the computational methods at the heart of most modern quantitative research. It will be essential reading for research assistants needing hands-on experience; students entering PhD programs in business, economics, and other social or natural sciences; and those seeking quantitative jobs in industry. No background in computer science is assumed; a learner need only have a computer with access to the Internet. Using the example as its principal pedagogical device, the book offers tried-and-true prototypes that illustrate many important computational tasks required in quantitative research. The best way to use the book is to read it at the computer keyboard and learn by doing. The book begins by introducing basic skills: how to use the operating system, how to organize data, and how to complete simple programming tasks. For its demonstrations, the book uses a UNIX-based operating system and a set of free software tools: the scripting language Python for programming tasks; the database management system SQLite; and the freely available R for statistical computing and graphics. The book goes on to describe particular tasks: analyzing data, implementing commonly used numerical and simulation methods, and creating extensions to Python to reduce cycle time. Finally, the book describes the use of LaTeX, a document markup language and preparation system.

Book Quantitative Biology

    Book Details:
  • Author : Brian Munsky
  • Publisher : MIT Press
  • Release : 2018-08-21
  • ISBN : 0262347113
  • Pages : 729 pages

Download or read book Quantitative Biology written by Brian Munsky and published by MIT Press. This book was released on 2018-08-21 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michał Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienałtowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber

Book Computational Methods for Quantitative Finance

Download or read book Computational Methods for Quantitative Finance written by Norbert Hilber and published by Springer Science & Business Media. This book was released on 2013-02-15 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical assumptions on which classical derivative pricing methods are based have come under scrutiny in recent years. The present volume offers an introduction to deterministic algorithms for the fast and accurate pricing of derivative contracts in modern finance. This unified, non-Monte-Carlo computational pricing methodology is capable of handling rather general classes of stochastic market models with jumps, including, in particular, all currently used Lévy and stochastic volatility models. It allows us e.g. to quantify model risk in computed prices on plain vanilla, as well as on various types of exotic contracts. The algorithms are developed in classical Black-Scholes markets, and then extended to market models based on multiscale stochastic volatility, to Lévy, additive and certain classes of Feller processes. This book is intended for graduate students and researchers, as well as for practitioners in the fields of quantitative finance and applied and computational mathematics with a solid background in mathematics, statistics or economics.​

Book Computational Modeling

Download or read book Computational Modeling written by Charles S. Taber and published by SAGE. This book was released on 1996-03-21 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this introduction to computational modelling the authors provide a concise description of computational methods, including dynamic simulation, knowledge-based models and machine learning, as a single broad class of research tools.

Book Quantitative Methods in Derivatives Pricing

Download or read book Quantitative Methods in Derivatives Pricing written by Domingo Tavella and published by John Wiley & Sons. This book was released on 2003-04-07 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a cogent description of the main methodologies used in derivatives pricing. Starting with a summary of the elements of Stochastic Calculus, Quantitative Methods in Derivatives Pricing develops the fundamental tools of financial engineering, such as scenario generation, simulation for European instruments, simulation for American instruments, and finite differences in an intuitive and practical manner, with an abundance of practical examples and case studies. Intended primarily as an introductory graduate textbook in computational finance, this book will also serve as a reference for practitioners seeking basic information on alternative pricing methodologies. Domingo Tavella is President of Octanti Associates, a consulting firm in risk management and financial systems design. He is the founder and chief editor of the Journal of Computational Finance and has pioneered the application of advanced numerical techniques in pricing and risk analysis in the financial and insurance industries. Tavella coauthored Pricing Financial Instruments: The Finite Difference Method. He holds a PhD in aeronautical engineering from Stanford University and an MBA in finance from the University of California at Berkeley.

Book Computational Methods in Finance

Download or read book Computational Methods in Finance written by Ali Hirsa and published by CRC Press. This book was released on 2016-04-19 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Helping readers accurately price a vast array of derivatives, this self-contained text explains how to solve complex functional equations through numerical methods. It addresses key computational methods in finance, including transform techniques, the finite difference method, and Monte Carlo simulation. Developed from his courses at Columbia University and the Courant Institute of New York University, the author also covers model calibration and optimization and describes techniques, such as Kalman and particle filters, for parameter estimation.

Book Computational and Statistical Methods for Analysing Big Data with Applications

Download or read book Computational and Statistical Methods for Analysing Big Data with Applications written by Shen Liu and published by Academic Press. This book was released on 2015-11-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Book Statistical and Computational Methods in Brain Image Analysis

Download or read book Statistical and Computational Methods in Brain Image Analysis written by Moo K. Chung and published by CRC Press. This book was released on 2013-07-23 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data. The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author’s website. By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.

Book Computational and Statistical Methods for Protein Quantification by Mass Spectrometry

Download or read book Computational and Statistical Methods for Protein Quantification by Mass Spectrometry written by Ingvar Eidhammer and published by John Wiley & Sons. This book was released on 2012-12-10 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive introduction to data analysis in quantitative proteomics This book provides all the necessary knowledge about mass spectrometry based proteomics methods and computational and statistical approaches to pursue the planning, design and analysis of quantitative proteomics experiments. The author’s carefully constructed approach allows readers to easily make the transition into the field of quantitative proteomics. Through detailed descriptions of wet-lab methods, computational approaches and statistical tools, this book covers the full scope of a quantitative experiment, allowing readers to acquire new knowledge as well as acting as a useful reference work for more advanced readers. Computational and Statistical Methods for Protein Quantification by Mass Spectrometry: Introduces the use of mass spectrometry in protein quantification and how the bioinformatics challenges in this field can be solved using statistical methods and various software programs. Is illustrated by a large number of figures and examples as well as numerous exercises. Provides both clear and rigorous descriptions of methods and approaches. Is thoroughly indexed and cross-referenced, combining the strengths of a text book with the utility of a reference work. Features detailed discussions of both wet-lab approaches and statistical and computational methods. With clear and thorough descriptions of the various methods and approaches, this book is accessible to biologists, informaticians, and statisticians alike and is aimed at readers across the academic spectrum, from advanced undergraduate students to post doctorates entering the field.

Book Experimental and Quantitative Methods in Contemporary Economics

Download or read book Experimental and Quantitative Methods in Contemporary Economics written by Kesra Nermend and published by Springer. This book was released on 2020-10-13 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contemporary economists, when analyzing economic behavior of people, need to use the diversity of research methods and modern ways of discovering knowledge. The increasing popularity of using economic experiments requires the use of IT tools and quantitative methods that facilitate the analysis of the research material obtained as a result of the experiments and the formulation of correct conclusions. This proceedings volume presents problems in contemporary economics and provides innovative solutions using a range of quantitative and experimental tools. Featuring selected contributions presented at the 2018 Computational Methods in Experimental Economics Conference (CMEE 2018), this book provides a modern economic perspective on such important issues as: sustainable development, consumption, production, national wealth, the silver economy, behavioral finance, economic and non-economic factors determining the behavior of household members, consumer preferences, social campaigns, and neuromarketing. International case studies are also offered.

Book Best Practices in Quantitative Methods

Download or read book Best Practices in Quantitative Methods written by Jason W. Osborne and published by SAGE. This book was released on 2008 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the "best" choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.

Book Computational and Decision Methods in Economics and Business

Download or read book Computational and Decision Methods in Economics and Business written by Anna Maria Gil-Lafuente and published by Springer Nature. This book was released on 2022-01-27 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents different topics related to innovation, complexity, uncertainty, modeling and simulation, fuzzy logic, decision-making, aggregation operators, business and economic applications, among others. The chapters are the results of research presented at the International Workshop "Innovation, Complexity and Uncertainty in Economics and Business", held in Barcelona, in November 2019, by The Ibero-American Network for Competitiveness, Innovation and Development (REDCID in Spanish) and the Royal Academy of Economic and Financial Sciences (RACEF in Spanish). These papers are useful for junior and senior researchers in the area of economics and business.

Book A Course in Mathematical Biology

Download or read book A Course in Mathematical Biology written by Gerda de Vries and published by SIAM. This book was released on 2006-07-01 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.

Book Twitter as Data

    Book Details:
  • Author : Zachary C. Steinert-Threlkeld
  • Publisher :
  • Release : 2017-12-28
  • ISBN : 1108543006
  • Pages : 116 pages

Download or read book Twitter as Data written by Zachary C. Steinert-Threlkeld and published by . This book was released on 2017-12-28 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rise of the internet and mobile telecommunications has created the possibility of using large datasets to understand behavior at unprecedented levels of temporal and geographic resolution. Online social networks attract the most users, though users of these new technologies provide their data through multiple sources, e.g. call detail records, blog posts, web forums, and content aggregation sites. These data allow scholars to adjudicate between competing theories as well as develop new ones, much as the microscope facilitated the development of the germ theory of disease. Of those networks, Twitter presents an ideal combination of size, international reach, and data accessibility that make it the preferred platform in academic studies. Acquiring, cleaning, and analyzing these data, however, require new tools and processes. This Element introduces these methods to social scientists and provides scripts and examples for downloading, processing, and analyzing Twitter data.

Book Using Shiny to Teach Econometric Models

Download or read book Using Shiny to Teach Econometric Models written by Shawna K. Metzger and published by Cambridge University Press. This book was released on 2021-05-20 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Element discusses how shiny, an R package, can help instructors teach quantitative methods more effectively by way of interactive web apps. The interactivity increases instructors' effectiveness by making students more active participants in the learning process, allowing them to engage with otherwise complex material in an accessible, dynamic way. The Element offers four detailed apps that cover two fundamental linear regression topics: estimation methods (least squares, maximum likelihood) and the classic linear regression assumptions. It includes a summary of what the apps can be used to demonstrate, detailed descriptions of the apps' full capabilities, vignettes from actual class use, and example activities. Two other apps pertain to a more advanced topic (LASSO), with similar supporting material. For instructors interested in modifying the apps, the Element also documents the main apps' general code structure, highlights some of the more likely modifications, and goes through what functions need to be amended.

Book Computational Analysis of Communication

Download or read book Computational Analysis of Communication written by Wouter van Atteveldt and published by John Wiley & Sons. This book was released on 2022-03-10 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides clear guidance on leveraging computational techniques to answer social science questions In disciplines such as political science, sociology, psychology, and media studies, the use of computational analysis is rapidly increasing. Statistical modeling, machine learning, and other computational techniques are revolutionizing the way electoral results are predicted, social sentiment is measured, consumer interest is evaluated, and much more. Computational Analysis of Communication teaches social science students and practitioners how computational methods can be used in a broad range of applications, providing discipline-relevant examples, clear explanations, and practical guidance. Assuming little or no background in data science or computer linguistics, this accessible textbook teaches readers how to use state-of-the art computational methods to perform data-driven analyses of social science issues. A cross-disciplinary team of authors—with expertise in both the social sciences and computer science—explains how to gather and clean data, manage textual, audio-visual, and network data, conduct statistical and quantitative analysis, and interpret, summarize, and visualize the results. Offered in a unique hybrid format that integrates print, ebook, and open-access online viewing, this innovative resource: Covers the essential skills for social sciences courses on big data, data visualization, text analysis, predictive analytics, and others Integrates theory, methods, and tools to provide unified approach to the subject Includes sample code in Python and links to actual research questions and cases from social science and communication studies Discusses ethical and normative issues relevant to privacy, data ownership, and reproducible social science Developed in partnership with the International Communication Association and by the editors of Computational Communication Research Computational Analysis of Communication is an invaluable textbook and reference for students taking computational methods courses in social sciences, and for professional social scientists looking to incorporate computational methods into their work.

Book Text Analysis with R

    Book Details:
  • Author : Matthew L. Jockers
  • Publisher : Springer Nature
  • Release : 2020-03-30
  • ISBN : 3030396436
  • Pages : 283 pages

Download or read book Text Analysis with R written by Matthew L. Jockers and published by Springer Nature. This book was released on 2020-03-30 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale “microanalysis” of single texts to large scale “macroanalysis” of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book’s focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.