EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Analysis of Nanofluid Flow in Microchannels with Applications to Micro heat Sinks and Bio MEMS

Download or read book Computational Analysis of Nanofluid Flow in Microchannels with Applications to Micro heat Sinks and Bio MEMS written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofluids, i.e., dilute suspensions of nanoparticles in liquids, may exhibit quite different thermal properties than the pure carrier fluids. For example, numerous experiments with nanofluids have shown that the effective thermal conductivities for such mixtures are measurably elevated, and hence beneficial applications to (micro-scale) cooling are obvious. A very different application of nanofluids could be in modern medicine, where for example, nanodrugs are mixed in microchannels for controlled delivery with bio-MEMS. In general, to optimize nanofluid flow in microchannels, best possible conduit geometries, mixing units, and device operational conditions have to be found for specific applications. Specifically, a suitable model of common nanofluids, performance as well as cost effective mixers, and entropy minimizing channel designs are the prerequisites for achieving these project objectives. Two effective thermal conductivity models for nanofluids were compared in detail, where the new KKL (Koo-Kleinstreuer-Li) model, based on Brownian-motion induced micro-mixing, achieved good agreements with the currently available experimental data sets. The thermal performance of nanofluid flow in a trapezoidal microchannel was analyzed using pure water as well as a nanofluid, i.e., CuO-water, with volume fractions of 1% and 4% CuO-particles with . It was found that nanofluids do measurably enhance the thermal performance of microchannel mixture flow with a small increase in pumping power. Specifically, the thermal performance increases with volume fraction; but, the extra pressure drop, or pumping power, will somewhat decrease the beneficial effects. Microchannel heat sinks with nanofluids are expected to be good candidates for the next generation of cooling devices. Microcooling device design aspects in light of minimization of entropy generation were investigated numerically. The influence of the Reynolds number (inlet velocity), fluid inlet temperature, channel geometr.

Book Computational Analysis of Nanofluid Flow in Microchannels with Applications to Micro heat Sinks and Bio MEMS

Download or read book Computational Analysis of Nanofluid Flow in Microchannels with Applications to Micro heat Sinks and Bio MEMS written by Jie Li and published by . This book was released on 2008 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keywords: nanofluids, microchannels, micro-heat sinks, bio-MEMS.

Book Nanofluids

    Book Details:
  • Author : Mohammad Hatami
  • Publisher : Elsevier
  • Release : 2024-06-22
  • ISBN : 0323956793
  • Pages : 322 pages

Download or read book Nanofluids written by Mohammad Hatami and published by Elsevier. This book was released on 2024-06-22 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofluids: Advanced Applications and Numerical Simulations combines the mathematical and numerical studies of nanofluids and their application to a range of applications. The book begins by introducing the principles of nanofluids, structures, types, properties, methods and stability. This is followed by a detailed chapter that explains a full range of numerical techniques for the modeling of nanofluids. Subsequent chapters offer in-depth coverage of target areas, including cooling and heating applications, micro-electric and magnetic devices, chemistry and oil recovery, biomedicine, renewable energy, and automotive engineering. Throughout the book, methods for numerical modelling are described in detail, with supporting equations, techniques, and applied examples. This is a valuable resource for advanced students, scientists, engineers, and R&D professionals working with nanofluids, simulation, and numerical methods for advanced applications, as well as researchers across nanotechnology, biomedicine, electronics, energy, chemistry, materials science and mechanical engineering. Presents numerical methods for modelling of nanofluids in details Examines stability, magnetic field, electric field, and other effects on behavior and optical properties Explores cutting-edge applications of nanofluids by numerical methods

Book Applications of Nanofluid for Heat Transfer Enhancement

Download or read book Applications of Nanofluid for Heat Transfer Enhancement written by Mohsen Sheikholeslami and published by William Andrew. This book was released on 2017-02-26 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid for solidification. The models discussed in the book have applications in various fields, including mathematics, physics, information science, biology, medicine, engineering, nanotechnology, and materials science. Presents the latest information on nanofluid free and force convection heat transfer, of nanofluid in the presence of thermal radiation, and nanofluid in the presence of an electric field Provides an understanding of the fundamentals in new numerical and analytical methods Includes codes for each modeling method discussed, along with advice on how to best apply them

Book Recent Developments of Nanofluids

Download or read book Recent Developments of Nanofluids written by Rahmat Ellahi and published by MDPI. This book was released on 2018-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Developments of Nanofluids.

Book Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits

Download or read book Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits written by S. Harikrishnan and published by Springer Nature. This book was released on 2022-01-04 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book focuses on the basic physical features and purpose of nanofluids and miniature heat sinks. The contents demonstrate the design modification, fabrication, experimental investigation, and various applications of miniature heat sinks. The book provides context for thermal performance of miniature heat sinks as well as summaries of experimental results correlations that reflect the current technical innovations are included. This book is a useful reference for both academia and industry alike.

Book Applications of Nanofluid Transportation and Heat Transfer Simulation

Download or read book Applications of Nanofluid Transportation and Heat Transfer Simulation written by Sheikholeslami, Mohsen and published by IGI Global. This book was released on 2018-12-28 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Different numerical and analytical methods have been employed to find the solution of governing equations for nanofluid flow and heat transfer. Applications of Nanofluid Transportation and Heat Transfer Simulation provides emerging research exploring the theoretical and practical aspects and applications of heat and nanofluid transfer. With practical examples and proposed methodology, it features coverage on a broad range of topics such as nanoparticles, electric fields, and hydrothermal behavior, making it an ideal reference source for engineers, researchers, graduate students, professionals, and academics.

Book Applications of Heat  Mass and Fluid Boundary Layers

Download or read book Applications of Heat Mass and Fluid Boundary Layers written by R. O. Fagbenle and published by Woodhead Publishing. This book was released on 2020-01-22 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method. This book’s multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future. Presents up-to-date research on boundary layers with very practical applications across a diverse mix of industries Includes mathematical analysis to provide detailed explanation and clarity Provides solutions to global energy issues and environmental sustainability

Book Magnetocaloric Energy Conversion

Download or read book Magnetocaloric Energy Conversion written by Andrej Kitanovski and published by Springer. This book was released on 2014-12-03 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the latest research on a new alternative form of technology, the magnetocaloric energy conversion. This area of research concerns magnetic refrigeration and cooling, magnetic heat pumping and magnetic power generation. The book’s systematic approach offers the theoretical basis of magnetocaloric energy conversion and its various sub domains and this is supported with the practical examples. Besides these fundamentals, the book also introduces potential solutions to engineering problems in magnetocalorics and to alternative technologies of solid state energy conversion. The aim of the book is therefore to provide engineers with the most up-to-date information and also to facilitate the understanding, design and construction of future magnetocaloric energy conversion devices. The magnetocaloric energy conversion represents an alternative to compressor based refrigerators and heat pumps. It is a serious alternative to power generation with low enthalpy heat sources. This green technology offers an opportunity to use environmentally friendly solid refrigerants and the potentially high energy efficiency follows the trends of future energy conversion devices. This book is intended for postgraduate students and researchers of refrigeration, heat pumping, power generation alternatives, heat regenerators and advanced heat transfer mechanisms.

Book Computational Nanofluid Flow and Heat Transfer Analyses Applied to Micro systems

Download or read book Computational Nanofluid Flow and Heat Transfer Analyses Applied to Micro systems written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The compactness and high surface-to-volume ratios of microscale liquid flow devices make them attractive alternatives to conventional flow systems for heat transfer augumentation, chemical reactor or combustor miniaturization, aerospace technology implementations, as well as biomedical applications, such as drug delivery, DNA sequencing, and bio-MEMS, to name a few. While experimental evidence indicates that fluid flow in microchannels, especially in terms of wall friction and heat transfer performance, differs from macrochannel flow behavior, laboratory observations are often inconsistent and contradictory. Some researchers attributed the deviations to unknown microscale effects, which often turned out to originate from inappropriate approaches to analyze the new phenomena. Specifically, system parameters were neglected, which are not important on the macroscale but play important roles in microscale analyses The main objectives of the study are to identify important parameters for microscale liquid flows and nanoparticle suspensions, to find a physically sound way to analyze the new phenomena, and to provide mathematical models to simulate them. Scale analysis was found to be a valuable tool to determine which forces become important on the microscale. With increasing system miniaturization surface forces, such as surface tension and van der Waals forces, take over the control from body forces like gravity and pressure. Furthermore, surface roughness, viscous dissipation, and entrance region effects are very important liquid flow parameters in microscale conduits. In summary, for liquid flow in microchannels with a characteristic width or height of L e"10 [µm], the continuum approach, in conjunction with appropriate closure models, is appropriate to analyze microscale effects. Employing the porous medium layer (PML) idea, surface roughness effects on momentumand heat-transfer in micro-conduits were numerically investigated and verified with experimental.

Book Solar Thermal Systems and Applications

Download or read book Solar Thermal Systems and Applications written by Mohsen Sheikholeslami and published by Elsevier. This book was released on 2024-05-28 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Thermal Systems and Applications: New Design Techniques for Improved Thermal Performance brings together the latest advances for the improved performance, efficiency, and integration of solar thermal energy (STE) technology. The book begins by introducing solar energy and solar thermal energy as a viable option in terms of green energy for industrial, commercial, and residential applications, as well as its role and potential within hybrid energy systems. This is followed by detailed chapters that focus on key innovations in solar thermal energy systems, covering novel approaches and techniques in areas such as flat plate solar collectors, modified evacuated tube solar collectors, solar parabolic trough collectors, linear Fresnel reflectors, photovoltaic thermal systems, phase change materials, nanotechnology, combined PVT-PCM systems, solar thermal systems and Trombe wall design, solar still units, and solar dish systems. Throughout the book, the coverage is supported by experimental and numerical modelling methods, and techniques are discussed and assessed with a view to improved electrical and thermal efficiency and performance. This is a valuable resource for researchers and advanced students in solar energy, thermal engineering, hybrid energy systems, renewable energy, mechanical engineering, nanotechnology, and materials science. This is also of interest to engineers, R&D professionals, scientists, and policy makers with an interest in solar thermal energy (STE) in an industrial, residential, or commercial setting. Introduces solar thermal energy (STE) and details the current state and future opportunities Reviews and analyzes the latest advances in solar thermal energy technology, design, methods, and applications Covers, in detail, the role of phase change materials and nanomaterials in STE systems

Book Nanoparticle Heat Transfer and Fluid Flow

Download or read book Nanoparticle Heat Transfer and Fluid Flow written by W. J. Minkowycz and published by CRC Press. This book was released on 2012-12-04 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.

Book Heat Transfer Enhancement Using Nanofluid Flow in Microchannels

Download or read book Heat Transfer Enhancement Using Nanofluid Flow in Microchannels written by Davood Domairry Ganji and published by William Andrew. This book was released on 2016-06-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat Transfer Enhancement Using Nanofluid Flow in Microchannels: Simulation of Heat and Mass Transfer focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels. Economic and environmental incentives have increased efforts to reduce energy consumption. Heat transfer enhancement, augmentation, or intensification are the terms that many scientists employ in their efforts in energy consumption reduction. These can be divided into (a) active techniques which require external forces such as magnetic force, and (b) passive techniques which do not require external forces, including geometry refinement and fluid additives. Gives readers the knowledge they need to be able to simulate nanofluids in a wide range of microchannels and optimise their heat transfer characteristics Contains real-life examples, mathematical procedures, numerical algorithms, and codes to allow readers to easily reproduce the methodologies covered, and to understand how they can be applied in practice Presents novel applications for heat exchange systems, such as entropy generation minimization and figures of merit, allowing readers to optimize the techniques they use Focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels

Book Nano and Bio Heat Transfer and Fluid Flow

Download or read book Nano and Bio Heat Transfer and Fluid Flow written by Majid Ghassemi and published by Academic Press. This book was released on 2017-03-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. Discusses nanoparticle applications in drug delivery Covers the engineering fundamentals of bio heat transfer and fluid flow Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems

Book Nanofluids

Download or read book Nanofluids written by Mohammad Mehdi Rashidi and published by Elsevier. This book was released on 2024-07-26 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofluids are a new class of heat transfer fluids engineered by dispersing and stably suspending nanoparticles in traditional heat transfer fluids. Recently they have obtained global attention from the scientific community owing to their unique properties and significant applications in different engineering fields. Nanofluids: Preparation, Applications and Simulation Methods provides a comprehensive review of recent advances in this important research field. Different approaches for preparing some remarkable families of nanofluids such as aluminum oxide-based nanofluids, CuO/Cu-based nanofluids, carbon nanotubes/graphene-based nanofluids, ZnO-based nanofluids, Fe3O4-based nanofluids, and SiO2-based nanofluids are discussed in detail as well as their current and potential applications. Different approaches for numerical, semi-analytical and analytical simulations are also discussed including molecular dynamics, the Lattice Boltzmann method, and spectral methods, as well as advanced analytical techniques such as the Differential Transform Method, the Homotopy Analysis Method, and Optimal Homotopy Analysis. The book will be a valuable reference resource for academic and industrial researchers, materials scientists and engineers, nanotechnologists, and chemists working in the development of nanomaterials and nanofluids for heat transfer in energy and engineering applications. Covers the synthesis of nanostructures, preparation of nanofluids, different applications and proposed models for fluid mechanics and heat transfer Presents recent advances on preparation methods, including green chemistry-based methods for preparation of nanomaterials and nanofluids Includes novel model-based approaches such as molecular dynamics and Lattice Boltzmann methods Delves into applications in renewable energy technologies and thermal management Contains a Semi-analytical approach for solving Time-Fractional Navier-Stokes Equation

Book Micro and Nano Flow Systems for Bioanalysis

Download or read book Micro and Nano Flow Systems for Bioanalysis written by Michael W. Collins and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro and Nano Flow Systems for Bioanalysis addresses the latest developments in biomedical engineering at very small scales. It shows how organic systems require multi-scale understanding in the broadest sensewhether the approach is experimental or mathematical, and whether the physiological state is healthy or diseased. Micro-and nano-fluidics represent key areas of translational research in which state-of-the-art engineering processes and devices are applied to bedside monitoring and treatment. By applying conventional micro- and nano-engineering to complex organic solids, fluids, and their interactions, leading researchers from throughout the world describe methods and techniques with great potential for use in medicine and clinical practice. Coverage includes the seeming plethora of new, fine-scale optical methods for measuring blood flow as well as endothelial activation and interaction with tissue. Generic areas of modeling and bioelectronics are also considered. In keeping with the recurring theme of medicine and clinical practice, approximately half of the chapters focus on the specific application of micro- and nano- flow systems to the understanding and treatment of cancer and cardiovascular diseases. This book developed from an Expert Overview Session on "Micro & Nano Flows in Medicine: the way ahead" at the 3rd Micro and Nano Flows Conference (MNF2011) held in Thessaloniki, Greece. Additional chapters were included to enhance the international, state-of-the-art coverage.