Download or read book Numerical Methods in Matrix Computations written by Åke Björck and published by Springer. This book was released on 2014-10-07 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.
Download or read book Solving Least Squares Problems written by Charles L. Lawson and published by SIAM. This book was released on 1995-12-01 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Classic edition includes a new appendix which summarizes the major developments since the book was originally published in 1974. The additions are organized in short sections associated with each chapter. An additional 230 references have been added, bringing the bibliography to over 400 entries. Appendix C has been edited to reflect changes in the associated software package and software distribution method.
Download or read book Stochastic Processes Estimation and Control written by Jason L. Speyer and published by SIAM. This book was released on 2008-01-01 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty and risk are integral to engineering because real systems have inherent ambiguities that arise naturally or due to our inability to model complex physics. The authors discuss probability theory, stochastic processes, estimation, and stochastic control strategies and show how probability can be used to model uncertainty in control and estimation problems. The material is practical and rich in research opportunities.
Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Download or read book Generalized Inverses written by Adi Ben-Israel and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition accounts for many major developments in generalized inverses while maintaining the informal and leisurely style of the 1974 first edition. Added material includes a chapter on applications, new exercises, and an appendix on the work of E.H. Moore.
Download or read book G W Stewart written by Misha E. Kilmer and published by Springer Science & Business Media. This book was released on 2010-09-30 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published in honor of his 70th birthday, this volume explores and celebrates the work of G.W. (Pete) Stewart, a world-renowned expert in computational linear algebra. This volume includes: forty-four of Stewart's most influential research papers in two subject areas: matrix algorithms, and rounding and perturbation theory; a biography of Stewart; a complete list of his publications, students, and honors; selected photographs; and commentaries on his works in collaboration with leading experts in the field. G.W. Stewart: Selected Works with Commentaries will appeal to graduate students, practitioners, and researchers in computational linear algebra and the history of mathematics.
Download or read book Numerical Linear Algebra and Applications written by Biswa Nath Datta and published by SIAM. This book was released on 2010-01-01 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full of features and applications, this acclaimed textbook for upper undergraduate level and graduate level students includes all the major topics of computational linear algebra, including solution of a system of linear equations, least-squares solutions of linear systems, computation of eigenvalues, eigenvectors, and singular value problems. Drawing from numerous disciplines of science and engineering, the author covers a variety of motivating applications. When a physical problem is posed, the scientific and engineering significance of the solution is clearly stated. Each chapter contains a summary of the important concepts developed in that chapter, suggestions for further reading, and numerous exercises, both theoretical and MATLAB and MATCOM based. The author also provides a list of key words for quick reference. The MATLAB toolkit available online, 'MATCOM', contains implementations of the major algorithms in the book and will enable students to study different algorithms for the same problem, comparing efficiency, stability, and accuracy.
Download or read book Matrix Computations written by Gene H. Golub and published by JHU Press. This book was released on 2013-02-15 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive treatment of numerical linear algebra from the standpoint of both theory and practice. The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms • parallel LU • discrete Poisson solvers • pseudospectra • structured linear equation problems • structured eigenvalue problems • large-scale SVD methods • polynomial eigenvalue problems Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software. The second most cited math book of 2012 according to MathSciNet, the book has placed in the top 10 for since 2005.
Download or read book KWIC Index for Numerical Algebra written by Alston Scott Householder and published by . This book was released on 1972 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1983 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Discrete Inverse and State Estimation Problems written by Carl Wunsch and published by Cambridge University Press. This book was released on 2006-06-29 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.
Download or read book Least squares Approximation written by Open University. Linear Mathematics Course Team and published by . This book was released on 1972 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Milestones in Matrix Computation The selected works of Gene H Golub with commentaries written by Raymond Chan and published by OUP Oxford. This book was released on 2007-02-22 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text presents and discusses some of the most influential papers in Matrix Computation authored by Gene H. Golub, one of the founding fathers of the field. The collection of 21 papers is divided into five main areas: iterative methods for linear systems, solution of least squares problems, matrix factorizations and applications, orthogonal polynomials and quadrature, and eigenvalue problems. Commentaries for each area are provided by leading experts: Anne Greenbaum, Ake Bjorck, Nicholas Higham, Walter Gautschi, and G. W. (Pete) Stewart. Comments on each paper are also included by the original authors, providing the reader with historical information on how the paper came to be written and under what circumstances the collaboration was undertaken. Including a brief biography and facsimiles of the original papers, this text will be of great interest to students and researchers in numerical analysis and scientific computation.
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Download or read book Mathematics of Computation written by and published by . This book was released on 1979 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Original articles on all aspects of numerical mathematics, book reviews, mathematical tables, and technical notes. Covers advances in numerical analysis, application of computer methods, high speed calculating, and other aids to computation.
Download or read book Milestones in Matrix Computation written by Gene Howard Golub and published by Oxford University Press. This book was released on 2007-02-22 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text presents and discusses some of the most influential papers in Matrix Computation authored by Gene H. Golub, one of the founding fathers of the field. Including commentaries by leading experts and a brief biography, this text will be of great interest to students and researchers in numerical analysis and scientific computation.