EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computation In Modern Physics  Third Edition

Download or read book Computation In Modern Physics Third Edition written by William R Gibbs and published by World Scientific Publishing Company. This book was released on 2006-05-05 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for two courses in computational physics. The first is at an advanced introductory level and is appropriate for seniors or first year graduate students. The student is introduced to integral and differential techniques, Monte Carlo integration, basic computer architecture, linear algebra, finite element techniques, digital signal processing and chaos. In this first part of the book, no knowledge of quantum mechanics is assumed. The third edition has expanded treatments of the subjects in each of the first nine chapters and a new section on modern parallel computing, in particular, Beowulf clusters.The second course (the last four chapters) deals with problems in the strong interaction using quantum mechanical techniques, with emphasis on solutions of many-body scattering problems and several-body bound state calculations with Monte Carlo techniques. It also contains a chapter dealing with the numerical summation of divergent series.

Book Computation in Modern Physics

Download or read book Computation in Modern Physics written by William R. Gibbs and published by World Scientific. This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for two courses in computational physics. The first is at an advanced introductory level and is appropriate for seniors or first year graduate students. The student is introduced to integral and differential techniques, Monte Carlo integration, basic computer architecture, linear algebra, finite element techniques, digital signal processing and chaos. In this first part of the book, no knowledge of quantum mechanics is assumed. The third edition has expanded treatments of the subjects in each of the first nine chapters and a new section on modern parallel computing, in particular, Beowulf clusters.The second course (the last four chapters) deals with problems in the strong interaction using quantum mechanical techniques, with emphasis on solutions of many-body scattering problems and several-body bound state calculations with Monte Carlo techniques. It also contains a chapter dealing with the numerical summation of divergent series.

Book Computation in Modern Physics

Download or read book Computation in Modern Physics written by Gibbs and published by . This book was released on 2004-01 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The first half of this book is designed as a course for first year graduate students in the sciences. Problems are chosen to illustrate mathematical and physical subjects. In this first half only a moderate background in physics and mathematics is assumed. Integration, Monte Carlo techniques, the solution of linear systems and finite element methods are treated with enough depth to allow the student to understand them. An introduction to modeling with differential methods, digital signal processing and chaos is given. One chapter provides an introduction to common computer architectures.In the second half a thorough understanding of quantum mechanics is assumed with the Schrvdinger equation being treated with scattering and bound state conditions. The time-dependent Schrvdinger equation is also solved. A thorough introduction to the solution of the quantum-mechanical bound state with variational and Monte Carlo Green's function is given, with two examples being the solution of the bound state nuclear helium 4 and the energy of atomic liquid helium 4 at zero temperature. The exact solution of the low energy scattering problem is presented. Algorithms for the Borel and Pade methods for the summation of divergent series are studied. In the final chapter, methods for the solution of hadronic scattering from nuclei are treated including single, double and multiple scattering as well as the derivation and calculation of multiple scattering through fundamental optical models.The first half of the book will be suitable for a general course in computational methods while the second half can serve as a second semester course for Physics majors intending to do work in hadronic physics orscattering.

Book Modern Physics with Modern Computational Methods

Download or read book Modern Physics with Modern Computational Methods written by John Morrison and published by Academic Press. This book was released on 2020-10-13 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Physics with Modern Computational Methods, Third Edition presents the ideas that have shaped modern physics and provides an introduction to current research in the different fields of physics. Intended as the text for a first course in modern physics following an introductory course in physics with calculus, the book begins with a brief and focused account of experiments that led to the formulation of the new quantum theory, while ensuing chapters go more deeply into the underlying physics. In this new edition, the differential equations that arise are converted into sets of linear equation or matrix equations by making a finite difference approximation of the derivatives or by using the spline collocation method. MATLAB programs are described for solving the eigenvalue equations for a particle in a finite well and the simple harmonic oscillator and for solving the radial equation for hydrogen. The lowest-lying solutions of these problems are plotted using MATLAB and the physical significance of these solutions are discussed. Each of the later chapters conclude with a description of modern developments. Makes critical topics accessible by illustrating them with simple examples and figures Presents modern quantum mechanical concepts systematically and applies them consistently throughout the book Utilizes modern computational methods with MATLAB programs to solve the equations that arise in physics, and describes the programs and solutions in detail Covers foundational topics, including transition probabilities, crystal structure, reciprocal lattices, and Bloch theorem to build understanding of applications, such as lasers and semiconductor devices Features expanded exercises and problems at the end of each chapter as well as multiple appendices for quick reference

Book Computation in Modern Physics

Download or read book Computation in Modern Physics written by William R. Gibbs and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Survey of Computational Physics

Download or read book A Survey of Computational Physics written by Rubin Landau and published by Princeton University Press. This book was released on 2011-10-30 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics. By treating science, applied mathematics, and computer science together, the book reveals how this knowledge base can be applied to a wider range of real-world problems than computational physics texts normally address. Designed for a one- or two-semester course, A Survey of Computational Physics will also interest anyone who wants a reference on or practical experience in the basics of computational physics. Accessible to advanced undergraduates Real-world problem-solving approach Java codes and applets integrated with text Companion Web site includes videos of lectures

Book Computation In Modern Physics  Second Edition

Download or read book Computation In Modern Physics Second Edition written by William R. Gibbs and published by . This book was released on 1999 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Computational Physics

Download or read book An Introduction to Computational Physics written by Tao Pang and published by Cambridge University Press. This book was released on 2006-01-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook provides an introduction to the basic methods of computational physics.

Book Computational Methods in Physics  Chemistry and Biology

Download or read book Computational Methods in Physics Chemistry and Biology written by Paul Harrison and published by John Wiley & Sons. This book was released on 2001-11-28 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eine gut verständliche Einführung in moderne naturwissenschaftliche Rechenmethoden! Nur geringe physikalische Vorkenntnisse voraussetzend, vermittelt der Autor Grundlagen und komplexere Ansätze anhand vieler Beispiele und ausgesprochen praxisnaher Übungsaufgaben. Besprochen werden alle Rechenmethoden, die im Grundstudium erlernt werden sollen, hinsichtlich ihrer Leistungsfähigkeit und ihrer Anwendungsgebiete.

Book Information  Physics  and Computation

Download or read book Information Physics and Computation written by Marc Mézard and published by Oxford University Press. This book was released on 2009-01-22 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.

Book An Advanced Course in Computational Nuclear Physics

Download or read book An Advanced Course in Computational Nuclear Physics written by Morten Hjorth-Jensen and published by Springer. This book was released on 2017-05-09 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.

Book Effective Computation in Physics

Download or read book Effective Computation in Physics written by Anthony Scopatz and published by "O'Reilly Media, Inc.". This book was released on 2015-06-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures

Book Computational Physics

    Book Details:
  • Author : Rubin H. Landau
  • Publisher : John Wiley & Sons
  • Release : 2015-09-08
  • ISBN : 3527413154
  • Pages : 647 pages

Download or read book Computational Physics written by Rubin H. Landau and published by John Wiley & Sons. This book was released on 2015-09-08 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scientific projects. It is probably the easiest programming language to learn for beginners, yet is also used for mainstream scientific computing, and has packages for excellent graphics and even symbolic manipulations. The text is designed for an upper-level undergraduate or beginning graduate course and provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. As part of the teaching of using computers to solve scientific problems, the reader is encouraged to work through a sample problem stated at the beginning of each chapter or unit, which involves studying the text, writing, debugging and running programs, visualizing the results, and the expressing in words what has been done and what can be concluded. Then there are exercises and problems at the end of each chapter for the reader to work on their own (with model programs given for that purpose).

Book The Physics of Computing

    Book Details:
  • Author : Luca Gammaitoni
  • Publisher : Springer Nature
  • Release : 2021-10-18
  • ISBN : 3030871088
  • Pages : 142 pages

Download or read book The Physics of Computing written by Luca Gammaitoni and published by Springer Nature. This book was released on 2021-10-18 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like “what is the minimum energy required to perform a computation?”, “what is the ultimate computational speed that a computer can achieve?” or “how long can a memory last”, are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.

Book Computation in Modern Physics

Download or read book Computation in Modern Physics written by William R. Gibbs and published by World Scientific. This book was released on 1999 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of computers to solve modern scientific problems is very widespread. The impact of the improvement of our techniques for the solution of complex problems is difficult to overstate. Even our approach to most problems has been changed. Solutions to problems once thought intractable are being routinely secured. Instead of using oversimplified models, as has been the practice for the treatment of scientific systems in the past, the entire problem can now be attacked. The second edition of Computation in Modern Physics develops and presents algorithms for the solution of many types of mathematical systems, some dating as far as the last few centuries, but also quite a number that have been developed within the last 10-50 years. In this last category, close attention is paid to the rapidly developing area of Monte Carlo techniques where new conceptual views of physics problems are being brought into play. With this method, problems in a large number of dimensions can be solved through the introduction of a modern method for the representation of multidimensional functions. This book is suitable for two different levels in computational physics. The first part is an advanced introductory level and is appropriate for good students with no previous experience in computational methods or any student with some experience. Here the student is introduced to integral and differential techniques, Monte Carlo integration, basic computer architecture, methods of linear algebra, finite element techniques, digital signal processing and chaos. The second part of the book is more specialized for problems in strong interaction with emphasis on solutions to many-body scattering problems andseveral-body bound state calculations with Monte Carlo techniques. It also contains a chapter dealing with techniques for the summation of divergent series.

Book Computational Physics

    Book Details:
  • Author : Rubin H. Landau
  • Publisher : John Wiley & Sons
  • Release : 2024-03-20
  • ISBN : 3527843310
  • Pages : 597 pages

Download or read book Computational Physics written by Rubin H. Landau and published by John Wiley & Sons. This book was released on 2024-03-20 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Physics The classic in the field for more than 25 years, now with increased emphasis on data science and new chapters on quantum computing, machine learning (AI), and general relativity Computational physics combines physics, applied mathematics, and computer science in a cutting-edge multidisciplinary approach to solving realistic physical problems. It has become integral to modern physics research because of its capacity to bridge the gap between mathematical theory and real-world system behavior. Computational Physics provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. Its philosophy is rooted in “learning by doing”, assisted by many sample programs in the popular Python programming language. The first third of the book lays the fundamentals of scientific computing, including programming basics, stable algorithms for differentiation and integration, and matrix computing. The latter two-thirds of the textbook cover more advanced topics such linear and nonlinear differential equations, chaos and fractals, Fourier analysis, nonlinear dynamics, and finite difference and finite elements methods. A particular focus in on the applications of these methods for solving realistic physical problems. Readers of the fourth edition of Computational Physics will also find: An exceptionally broad range of topics, from simple matrix manipulations to intricate computations in nonlinear dynamics A whole suite of supplementary material: Python programs, Jupyter notebooks and videos Computational Physics is ideal for students in physics, engineering, materials science, and any subjects drawing on applied physics.

Book Computational Quantum Mechanics

Download or read book Computational Quantum Mechanics written by Joshua Izaac and published by Springer. This book was released on 2019-02-15 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required – an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems.